Metamath Proof Explorer


Theorem pocnv

Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion pocnv R Po A R -1 Po A

Proof

Step Hyp Ref Expression
1 poirr R Po A x A ¬ x R x
2 vex x V
3 2 2 brcnv x R -1 x x R x
4 1 3 sylnibr R Po A x A ¬ x R -1 x
5 3anrev x A y A z A z A y A x A
6 potr R Po A z A y A x A z R y y R x z R x
7 5 6 sylan2b R Po A x A y A z A z R y y R x z R x
8 vex y V
9 2 8 brcnv x R -1 y y R x
10 vex z V
11 8 10 brcnv y R -1 z z R y
12 9 11 anbi12ci x R -1 y y R -1 z z R y y R x
13 2 10 brcnv x R -1 z z R x
14 7 12 13 3imtr4g R Po A x A y A z A x R -1 y y R -1 z x R -1 z
15 4 14 ispod R Po A R -1 Po A