Metamath Proof Explorer


Theorem posasymb

Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses posi.b B=BaseK
posi.l ˙=K
Assertion posasymb KPosetXBYBX˙YY˙XX=Y

Proof

Step Hyp Ref Expression
1 posi.b B=BaseK
2 posi.l ˙=K
3 simp1 KPosetXBYBKPoset
4 simp2 KPosetXBYBXB
5 simp3 KPosetXBYBYB
6 1 2 posi KPosetXBYBYBX˙XX˙YY˙XX=YX˙YY˙YX˙Y
7 3 4 5 5 6 syl13anc KPosetXBYBX˙XX˙YY˙XX=YX˙YY˙YX˙Y
8 7 simp2d KPosetXBYBX˙YY˙XX=Y
9 1 2 posref KPosetXBX˙X
10 breq2 X=YX˙XX˙Y
11 9 10 syl5ibcom KPosetXBX=YX˙Y
12 breq1 X=YX˙XY˙X
13 9 12 syl5ibcom KPosetXBX=YY˙X
14 11 13 jcad KPosetXBX=YX˙YY˙X
15 14 3adant3 KPosetXBYBX=YX˙YY˙X
16 8 15 impbid KPosetXBYBX˙YY˙XX=Y