Metamath Proof Explorer


Theorem posjidm

Description: Poset join is idempotent. latjidm could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Hypotheses posjidm.b B=BaseK
posjidm.j ˙=joinK
Assertion posjidm KPosetXBX˙X=X

Proof

Step Hyp Ref Expression
1 posjidm.b B=BaseK
2 posjidm.j ˙=joinK
3 eqid lubK=lubK
4 simpl KPosetXBKPoset
5 simpr KPosetXBXB
6 3 2 4 5 5 joinval KPosetXBX˙X=lubKXX
7 eqid K=K
8 1 7 posref KPosetXBXKX
9 eqidd KPosetXBXX=XX
10 4 1 5 5 7 8 9 3 lubpr KPosetXBlubKXX=X
11 6 10 eqtrd KPosetXBX˙X=X