Metamath Proof Explorer


Theorem postcpos

Description: The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses postc.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
postc.k φ K Proset
Assertion postcpos φ K Poset C Poset

Proof

Step Hyp Ref Expression
1 postc.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 postc.k φ K Proset
3 1 2 prstcprs φ C Proset
4 eqidd φ Base K = Base K
5 1 2 4 prstcbas φ Base K = Base C
6 eqidd φ K = K
7 1 2 6 prstcle φ x K y x C y
8 7 adantr φ x Base K y Base K x K y x C y
9 2 3 4 5 8 pospropd φ K Poset C Poset