Metamath Proof Explorer


Theorem postcpos

Description: The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses postc.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
postc.k φKProset
Assertion postcpos φKPosetCPoset

Proof

Step Hyp Ref Expression
1 postc.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 postc.k φKProset
3 1 2 prstcprs φCProset
4 eqidd φBaseK=BaseK
5 1 2 4 prstcbas φBaseK=BaseC
6 eqidd φK=K
7 1 2 6 prstcle φxKyxCy
8 7 adantr φxBaseKyBaseKxKyxCy
9 2 3 4 5 8 pospropd φKPosetCPoset