Metamath Proof Explorer


Theorem postcposALT

Description: Alternate proof for postcpos . (Contributed by Zhi Wang, 25-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses postc.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
postc.k φ K Proset
Assertion postcposALT φ K Poset C Poset

Proof

Step Hyp Ref Expression
1 postc.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 postc.k φ K Proset
3 eqidd φ Base K = Base K
4 1 2 3 prstcbas φ Base K = Base C
5 eqidd φ K = K
6 1 2 5 prstcle φ x K y x C y
7 1 2 5 prstcle φ y K x y C x
8 6 7 anbi12d φ x K y y K x x C y y C x
9 8 imbi1d φ x K y y K x x = y x C y y C x x = y
10 4 9 raleqbidvv φ y Base K x K y y K x x = y y Base C x C y y C x x = y
11 4 10 raleqbidvv φ x Base K y Base K x K y y K x x = y x Base C y Base C x C y y C x x = y
12 eqid Base K = Base K
13 eqid K = K
14 12 13 ispos2 K Poset K Proset x Base K y Base K x K y y K x x = y
15 14 baib K Proset K Poset x Base K y Base K x K y y K x x = y
16 2 15 syl φ K Poset x Base K y Base K x K y y K x x = y
17 1 2 prstcprs φ C Proset
18 eqid Base C = Base C
19 eqid C = C
20 18 19 ispos2 C Poset C Proset x Base C y Base C x C y y C x x = y
21 20 baib C Proset C Poset x Base C y Base C x C y y C x x = y
22 17 21 syl φ C Poset x Base C y Base C x C y y C x x = y
23 11 16 22 3bitr4d φ K Poset C Poset