Metamath Proof Explorer


Theorem postcposALT

Description: Alternate proof for postcpos . (Contributed by Zhi Wang, 25-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses postc.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
postc.k φKProset
Assertion postcposALT φKPosetCPoset

Proof

Step Hyp Ref Expression
1 postc.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 postc.k φKProset
3 eqidd φBaseK=BaseK
4 1 2 3 prstcbas φBaseK=BaseC
5 eqidd φK=K
6 1 2 5 prstcle φxKyxCy
7 1 2 5 prstcle φyKxyCx
8 6 7 anbi12d φxKyyKxxCyyCx
9 8 imbi1d φxKyyKxx=yxCyyCxx=y
10 4 9 raleqbidvv φyBaseKxKyyKxx=yyBaseCxCyyCxx=y
11 4 10 raleqbidvv φxBaseKyBaseKxKyyKxx=yxBaseCyBaseCxCyyCxx=y
12 eqid BaseK=BaseK
13 eqid K=K
14 12 13 ispos2 KPosetKProsetxBaseKyBaseKxKyyKxx=y
15 14 baib KProsetKPosetxBaseKyBaseKxKyyKxx=y
16 2 15 syl φKPosetxBaseKyBaseKxKyyKxx=y
17 1 2 prstcprs φCProset
18 eqid BaseC=BaseC
19 eqid C=C
20 18 19 ispos2 CPosetCProsetxBaseCyBaseCxCyyCxx=y
21 20 baib CProsetCPosetxBaseCyBaseCxCyyCxx=y
22 17 21 syl φCPosetxBaseCyBaseCxCyyCxx=y
23 11 16 22 3bitr4d φKPosetCPoset