Metamath Proof Explorer


Theorem prcof21a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof21a.n N = D Nat E
prcof21a.a φ A K N L
prcof21a.p No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) with typecode |-
prcof21a.f φ F U
Assertion prcof21a φ K P L A = A 1 st F

Proof

Step Hyp Ref Expression
1 prcof21a.n N = D Nat E
2 prcof21a.a φ A K N L
3 prcof21a.p Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) with typecode |-
4 prcof21a.f φ F U
5 1 natrcl A K N L K D Func E L D Func E
6 2 5 syl φ K D Func E L D Func E
7 6 simpld φ K D Func E
8 6 simprd φ L D Func E
9 1 7 8 3 4 prcof2a φ K P L = a K N L a 1 st F
10 simpr φ a = A a = A
11 10 coeq1d φ a = A a 1 st F = A 1 st F
12 fvexd φ 1 st F V
13 2 12 coexd φ A 1 st F V
14 9 11 2 13 fvmptd φ K P L A = A 1 st F