Metamath Proof Explorer


Theorem prcof2a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof2a.n N = D Nat E
prcof2a.k φ K D Func E
prcof2a.l φ L D Func E
prcof2a.p No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) with typecode |-
prcof2a.f φ F U
Assertion prcof2a φ K P L = a K N L a 1 st F

Proof

Step Hyp Ref Expression
1 prcof2a.n N = D Nat E
2 prcof2a.k φ K D Func E
3 prcof2a.l φ L D Func E
4 prcof2a.p Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) with typecode |-
5 prcof2a.f φ F U
6 eqid D Func E = D Func E
7 2 func1st2nd φ 1 st K D Func E 2 nd K
8 7 funcrcl2 φ D Cat
9 7 funcrcl3 φ E Cat
10 6 1 8 9 5 prcofvala Could not format ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-
11 10 fveq2d Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( 2nd ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( 2nd ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) ) with typecode |-
12 ovex D Func E V
13 12 mptex k D Func E k func F V
14 12 12 mpoex k D Func E , l D Func E a k N l a 1 st F V
15 13 14 op2nd 2 nd k D Func E k func F k D Func E , l D Func E a k N l a 1 st F = k D Func E , l D Func E a k N l a 1 st F
16 11 15 eqtrdi Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) ) with typecode |-
17 4 16 eqtr3d φ P = k D Func E , l D Func E a k N l a 1 st F
18 simprl φ k = K l = L k = K
19 simprr φ k = K l = L l = L
20 18 19 oveq12d φ k = K l = L k N l = K N L
21 20 mpteq1d φ k = K l = L a k N l a 1 st F = a K N L a 1 st F
22 ovex K N L V
23 22 mptex a K N L a 1 st F V
24 23 a1i φ a K N L a 1 st F V
25 17 21 2 3 24 ovmpod φ K P L = a K N L a 1 st F