Metamath Proof Explorer


Theorem prdsbas2

Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
Assertion prdsbas2 φB=xIBaseRx

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 fnex RFnIIWRV
7 5 4 6 syl2anc φRV
8 5 fndmd φdomR=I
9 1 3 7 2 8 prdsbas φB=xIBaseRx