Metamath Proof Explorer


Theorem prdsbasprj

Description: Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
prdsbasmpt.t φTB
prdsbasprj.j φJI
Assertion prdsbasprj φTJBaseRJ

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 prdsbasmpt.t φTB
7 prdsbasprj.j φJI
8 fveq2 x=JTx=TJ
9 2fveq3 x=JBaseRx=BaseRJ
10 8 9 eleq12d x=JTxBaseRxTJBaseRJ
11 1 2 3 4 5 prdsbas2 φB=xIBaseRx
12 6 11 eleqtrd φTxIBaseRx
13 elixp2 TxIBaseRxTVTFnIxITxBaseRx
14 13 simp3bi TxIBaseRxxITxBaseRx
15 12 14 syl φxITxBaseRx
16 10 15 7 rspcdva φTJBaseRJ