Metamath Proof Explorer


Theorem prdsmslem1

Description: Lemma for prdsms . The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses prdsxms.y Y=S𝑠R
prdsxms.s φSW
prdsxms.i φIFin
prdsxms.d D=distY
prdsxms.b B=BaseY
prdsms.r φR:IMetSp
Assertion prdsmslem1 φDMetB

Proof

Step Hyp Ref Expression
1 prdsxms.y Y=S𝑠R
2 prdsxms.s φSW
3 prdsxms.i φIFin
4 prdsxms.d D=distY
5 prdsxms.b B=BaseY
6 prdsms.r φR:IMetSp
7 eqid S𝑠kIRk=S𝑠kIRk
8 eqid BaseS𝑠kIRk=BaseS𝑠kIRk
9 eqid BaseRk=BaseRk
10 eqid distRkBaseRk×BaseRk=distRkBaseRk×BaseRk
11 eqid distS𝑠kIRk=distS𝑠kIRk
12 6 ffvelcdmda φkIRkMetSp
13 9 10 msmet RkMetSpdistRkBaseRk×BaseRkMetBaseRk
14 12 13 syl φkIdistRkBaseRk×BaseRkMetBaseRk
15 7 8 9 10 11 2 3 12 14 prdsmet φdistS𝑠kIRkMetBaseS𝑠kIRk
16 6 feqmptd φR=kIRk
17 16 oveq2d φS𝑠R=S𝑠kIRk
18 1 17 eqtrid φY=S𝑠kIRk
19 18 fveq2d φdistY=distS𝑠kIRk
20 4 19 eqtrid φD=distS𝑠kIRk
21 18 fveq2d φBaseY=BaseS𝑠kIRk
22 5 21 eqtrid φB=BaseS𝑠kIRk
23 22 fveq2d φMetB=MetBaseS𝑠kIRk
24 15 20 23 3eltr4d φDMetB