Metamath Proof Explorer


Theorem prdsms

Description: The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis prdsxms.y Y=S𝑠R
Assertion prdsms SWIFinR:IMetSpYMetSp

Proof

Step Hyp Ref Expression
1 prdsxms.y Y=S𝑠R
2 msxms xMetSpx∞MetSp
3 2 ssriv MetSp∞MetSp
4 fss R:IMetSpMetSp∞MetSpR:I∞MetSp
5 3 4 mpan2 R:IMetSpR:I∞MetSp
6 1 prdsxms SWIFinR:I∞MetSpY∞MetSp
7 5 6 syl3an3 SWIFinR:IMetSpY∞MetSp
8 simp1 SWIFinR:IMetSpSW
9 simp2 SWIFinR:IMetSpIFin
10 eqid distY=distY
11 eqid BaseY=BaseY
12 simp3 SWIFinR:IMetSpR:IMetSp
13 1 8 9 10 11 12 prdsmslem1 SWIFinR:IMetSpdistYMetBaseY
14 ssid BaseYBaseY
15 metres2 distYMetBaseYBaseYBaseYdistYBaseY×BaseYMetBaseY
16 13 14 15 sylancl SWIFinR:IMetSpdistYBaseY×BaseYMetBaseY
17 eqid TopOpenY=TopOpenY
18 eqid distYBaseY×BaseY=distYBaseY×BaseY
19 17 11 18 isms YMetSpY∞MetSpdistYBaseY×BaseYMetBaseY
20 7 16 19 sylanbrc SWIFinR:IMetSpYMetSp