Metamath Proof Explorer


Theorem prdsms

Description: The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis prdsxms.y 𝑌 = ( 𝑆 Xs 𝑅 )
Assertion prdsms ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ MetSp )

Proof

Step Hyp Ref Expression
1 prdsxms.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 msxms ( 𝑥 ∈ MetSp → 𝑥 ∈ ∞MetSp )
3 2 ssriv MetSp ⊆ ∞MetSp
4 fss ( ( 𝑅 : 𝐼 ⟶ MetSp ∧ MetSp ⊆ ∞MetSp ) → 𝑅 : 𝐼 ⟶ ∞MetSp )
5 3 4 mpan2 ( 𝑅 : 𝐼 ⟶ MetSp → 𝑅 : 𝐼 ⟶ ∞MetSp )
6 1 prdsxms ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp )
7 5 6 syl3an3 ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ ∞MetSp )
8 simp1 ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑆𝑊 )
9 simp2 ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝐼 ∈ Fin )
10 eqid ( dist ‘ 𝑌 ) = ( dist ‘ 𝑌 )
11 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
12 simp3 ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑅 : 𝐼 ⟶ MetSp )
13 1 8 9 10 11 12 prdsmslem1 ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) )
14 ssid ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 )
15 metres2 ( ( ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) )
16 13 14 15 sylancl ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) )
17 eqid ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 )
18 eqid ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) )
19 17 11 18 isms ( 𝑌 ∈ MetSp ↔ ( 𝑌 ∈ ∞MetSp ∧ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) )
20 7 16 19 sylanbrc ( ( 𝑆𝑊𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ MetSp )