Metamath Proof Explorer


Theorem predep

Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion predep XBPredEAX=AX

Proof

Step Hyp Ref Expression
1 df-pred PredEAX=AE-1X
2 relcnv RelE-1
3 relimasn RelE-1E-1X=y|XE-1y
4 2 3 ax-mp E-1X=y|XE-1y
5 brcnvg XByVXE-1yyEX
6 5 elvd XBXE-1yyEX
7 epelg XByEXyX
8 6 7 bitrd XBXE-1yyX
9 8 eqabcdv XBy|XE-1y=X
10 4 9 eqtrid XBE-1X=X
11 10 ineq2d XBAE-1X=AX
12 1 11 eqtrid XBPredEAX=AX