Metamath Proof Explorer


Theorem prf2fval

Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k P=F⟨,⟩FG
prfval.b B=BaseC
prfval.h H=HomC
prfval.c φFCFuncD
prfval.d φGCFuncE
prf1.x φXB
prf2.y φYB
Assertion prf2fval φX2ndPY=hXHYX2ndFYhX2ndGYh

Proof

Step Hyp Ref Expression
1 prfval.k P=F⟨,⟩FG
2 prfval.b B=BaseC
3 prfval.h H=HomC
4 prfval.c φFCFuncD
5 prfval.d φGCFuncE
6 prf1.x φXB
7 prf2.y φYB
8 1 2 3 4 5 prfval φP=xB1stFx1stGxxB,yBhxHyx2ndFyhx2ndGyh
9 2 fvexi BV
10 9 mptex xB1stFx1stGxV
11 9 9 mpoex xB,yBhxHyx2ndFyhx2ndGyhV
12 10 11 op2ndd P=xB1stFx1stGxxB,yBhxHyx2ndFyhx2ndGyh2ndP=xB,yBhxHyx2ndFyhx2ndGyh
13 8 12 syl φ2ndP=xB,yBhxHyx2ndFyhx2ndGyh
14 simprl φx=Xy=Yx=X
15 simprr φx=Xy=Yy=Y
16 14 15 oveq12d φx=Xy=YxHy=XHY
17 14 15 oveq12d φx=Xy=Yx2ndFy=X2ndFY
18 17 fveq1d φx=Xy=Yx2ndFyh=X2ndFYh
19 14 15 oveq12d φx=Xy=Yx2ndGy=X2ndGY
20 19 fveq1d φx=Xy=Yx2ndGyh=X2ndGYh
21 18 20 opeq12d φx=Xy=Yx2ndFyhx2ndGyh=X2ndFYhX2ndGYh
22 16 21 mpteq12dv φx=Xy=YhxHyx2ndFyhx2ndGyh=hXHYX2ndFYhX2ndGYh
23 ovex XHYV
24 23 mptex hXHYX2ndFYhX2ndGYhV
25 24 a1i φhXHYX2ndFYhX2ndGYhV
26 13 22 6 7 25 ovmpod φX2ndPY=hXHYX2ndFYhX2ndGYh