Metamath Proof Explorer


Theorem pridlnr

Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses pridlnr.1 G=1stR
prdilnr.2 X=ranG
Assertion pridlnr RRingOpsPPrIdlRPX

Proof

Step Hyp Ref Expression
1 pridlnr.1 G=1stR
2 prdilnr.2 X=ranG
3 eqid 2ndR=2ndR
4 1 3 2 ispridl RRingOpsPPrIdlRPIdlRPXaIdlRbIdlRxaybx2ndRyPaPbP
5 3anan12 PIdlRPXaIdlRbIdlRxaybx2ndRyPaPbPPXPIdlRaIdlRbIdlRxaybx2ndRyPaPbP
6 4 5 bitrdi RRingOpsPPrIdlRPXPIdlRaIdlRbIdlRxaybx2ndRyPaPbP
7 6 simprbda RRingOpsPPrIdlRPX