Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
pridlnr
Next ⟩
pridl
Metamath Proof Explorer
Ascii
Unicode
Theorem
pridlnr
Description:
A prime ideal is a proper ideal.
(Contributed by
Jeff Madsen
, 19-Jun-2010)
Ref
Expression
Hypotheses
pridlnr.1
⊢
G
=
1
st
⁡
R
prdilnr.2
⊢
X
=
ran
⁡
G
Assertion
pridlnr
⊢
R
∈
RingOps
∧
P
∈
PrIdl
⁡
R
→
P
≠
X
Proof
Step
Hyp
Ref
Expression
1
pridlnr.1
⊢
G
=
1
st
⁡
R
2
prdilnr.2
⊢
X
=
ran
⁡
G
3
eqid
⊢
2
nd
⁡
R
=
2
nd
⁡
R
4
1
3
2
ispridl
⊢
R
∈
RingOps
→
P
∈
PrIdl
⁡
R
↔
P
∈
Idl
⁡
R
∧
P
≠
X
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
5
3anan12
⊢
P
∈
Idl
⁡
R
∧
P
≠
X
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
↔
P
≠
X
∧
P
∈
Idl
⁡
R
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
6
4
5
bitrdi
⊢
R
∈
RingOps
→
P
∈
PrIdl
⁡
R
↔
P
≠
X
∧
P
∈
Idl
⁡
R
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
7
6
simprbda
⊢
R
∈
RingOps
∧
P
∈
PrIdl
⁡
R
→
P
≠
X