Metamath Proof Explorer


Theorem prjspnssbas

Description: A projective point spans a subset of the (nonzero) affine points. (Contributed by SN, 17-Jan-2025)

Ref Expression
Hypotheses prjspnssbas.p P=Nℙ𝕣𝕠𝕛nK
prjspnssbas.w W=KfreeLMod0N
prjspnssbas.b B=BaseW0W
prjspnssbas.n φN0
prjspnssbas.k φKDivRing
Assertion prjspnssbas φP𝒫B

Proof

Step Hyp Ref Expression
1 prjspnssbas.p P=Nℙ𝕣𝕠𝕛nK
2 prjspnssbas.w W=KfreeLMod0N
3 prjspnssbas.b B=BaseW0W
4 prjspnssbas.n φN0
5 prjspnssbas.k φKDivRing
6 eqid xy|xByBlBaseKx=lWy=xy|xByBlBaseKx=lWy
7 eqid BaseK=BaseK
8 eqid W=W
9 6 2 3 7 8 prjspnval2 N0KDivRingNℙ𝕣𝕠𝕛nK=B/xy|xByBlBaseKx=lWy
10 4 5 9 syl2anc φNℙ𝕣𝕠𝕛nK=B/xy|xByBlBaseKx=lWy
11 1 10 eqtrid φP=B/xy|xByBlBaseKx=lWy
12 6 2 3 7 8 5 prjspner φxy|xByBlBaseKx=lWyErB
13 12 qsss φB/xy|xByBlBaseKx=lWy𝒫B
14 11 13 eqsstrd φP𝒫B