Metamath Proof Explorer


Theorem prmolelcmf

Description: The primorial of a positive integer is less than or equal to the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020) (Revised by AV, 29-Aug-2020)

Ref Expression
Assertion prmolelcmf N0#pNlcm_1N

Proof

Step Hyp Ref Expression
1 prmocl N0#pN
2 1 nnzd N0#pN
3 fzssz 1N
4 fzfid N01NFin
5 0nelfz1 01N
6 5 a1i N001N
7 lcmfn0cl 1N1NFin01Nlcm_1N
8 3 4 6 7 mp3an2i N0lcm_1N
9 2 8 jca N0#pNlcm_1N
10 prmodvdslcmf N0#pNlcm_1N
11 dvdsle #pNlcm_1N#pNlcm_1N#pNlcm_1N
12 9 10 11 sylc N0#pNlcm_1N