Metamath Proof Explorer


Theorem prmsimpcyc

Description: A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023)

Ref Expression
Hypothesis prmsimpcyc.1 B=BaseG
Assertion prmsimpcyc BGSimpGrpGCycGrp

Proof

Step Hyp Ref Expression
1 prmsimpcyc.1 B=BaseG
2 simpggrp GSimpGrpGGrp
3 id BB
4 1 prmcyg GGrpBGCycGrp
5 2 3 4 syl2anr BGSimpGrpGCycGrp
6 cyggrp GCycGrpGGrp
7 6 adantl BGCycGrpGGrp
8 simpl BGCycGrpB
9 1 7 8 prmgrpsimpgd BGCycGrpGSimpGrp
10 5 9 impbida BGSimpGrpGCycGrp