Description: A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prmsimpcyc.1 | |
|
Assertion | prmsimpcyc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmsimpcyc.1 | |
|
2 | simpggrp | |
|
3 | id | |
|
4 | 1 | prmcyg | |
5 | 2 3 4 | syl2anr | |
6 | cyggrp | |
|
7 | 6 | adantl | |
8 | simpl | |
|
9 | 1 7 8 | prmgrpsimpgd | |
10 | 5 9 | impbida | |