Description: A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmsimpcyc.1 | ||
| Assertion | prmsimpcyc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmsimpcyc.1 | ||
| 2 | simpggrp | ||
| 3 | id | ||
| 4 | 1 | prmcyg | |
| 5 | 2 3 4 | syl2anr | |
| 6 | cyggrp | ||
| 7 | 6 | adantl | |
| 8 | simpl | ||
| 9 | 1 7 8 | prmgrpsimpgd | |
| 10 | 5 9 | impbida |