Metamath Proof Explorer


Theorem prmsimpcyc

Description: A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023)

Ref Expression
Hypothesis prmsimpcyc.1 𝐵 = ( Base ‘ 𝐺 )
Assertion prmsimpcyc ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( 𝐺 ∈ SimpGrp ↔ 𝐺 ∈ CycGrp ) )

Proof

Step Hyp Ref Expression
1 prmsimpcyc.1 𝐵 = ( Base ‘ 𝐺 )
2 simpggrp ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp )
3 id ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( ♯ ‘ 𝐵 ) ∈ ℙ )
4 1 prmcyg ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ CycGrp )
5 2 3 4 syl2anr ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ SimpGrp ) → 𝐺 ∈ CycGrp )
6 cyggrp ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp )
7 6 adantl ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ CycGrp ) → 𝐺 ∈ Grp )
8 simpl ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ CycGrp ) → ( ♯ ‘ 𝐵 ) ∈ ℙ )
9 1 7 8 prmgrpsimpgd ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ CycGrp ) → 𝐺 ∈ SimpGrp )
10 5 9 impbida ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( 𝐺 ∈ SimpGrp ↔ 𝐺 ∈ CycGrp ) )