Step |
Hyp |
Ref |
Expression |
1 |
|
prmsimpcyc.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
simpggrp |
⊢ ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp ) |
3 |
|
id |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
4 |
1
|
prmcyg |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ CycGrp ) |
5 |
2 3 4
|
syl2anr |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ SimpGrp ) → 𝐺 ∈ CycGrp ) |
6 |
|
cyggrp |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
7 |
6
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ CycGrp ) → 𝐺 ∈ Grp ) |
8 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ CycGrp ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
9 |
1 7 8
|
prmgrpsimpgd |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ 𝐺 ∈ CycGrp ) → 𝐺 ∈ SimpGrp ) |
10 |
5 9
|
impbida |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( 𝐺 ∈ SimpGrp ↔ 𝐺 ∈ CycGrp ) ) |