Step |
Hyp |
Ref |
Expression |
1 |
|
prmsimpcyc.1 |
|- B = ( Base ` G ) |
2 |
|
simpggrp |
|- ( G e. SimpGrp -> G e. Grp ) |
3 |
|
id |
|- ( ( # ` B ) e. Prime -> ( # ` B ) e. Prime ) |
4 |
1
|
prmcyg |
|- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp ) |
5 |
2 3 4
|
syl2anr |
|- ( ( ( # ` B ) e. Prime /\ G e. SimpGrp ) -> G e. CycGrp ) |
6 |
|
cyggrp |
|- ( G e. CycGrp -> G e. Grp ) |
7 |
6
|
adantl |
|- ( ( ( # ` B ) e. Prime /\ G e. CycGrp ) -> G e. Grp ) |
8 |
|
simpl |
|- ( ( ( # ` B ) e. Prime /\ G e. CycGrp ) -> ( # ` B ) e. Prime ) |
9 |
1 7 8
|
prmgrpsimpgd |
|- ( ( ( # ` B ) e. Prime /\ G e. CycGrp ) -> G e. SimpGrp ) |
10 |
5 9
|
impbida |
|- ( ( # ` B ) e. Prime -> ( G e. SimpGrp <-> G e. CycGrp ) ) |