Metamath Proof Explorer


Theorem prmsimpcyc

Description: A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023)

Ref Expression
Hypothesis prmsimpcyc.1
|- B = ( Base ` G )
Assertion prmsimpcyc
|- ( ( # ` B ) e. Prime -> ( G e. SimpGrp <-> G e. CycGrp ) )

Proof

Step Hyp Ref Expression
1 prmsimpcyc.1
 |-  B = ( Base ` G )
2 simpggrp
 |-  ( G e. SimpGrp -> G e. Grp )
3 id
 |-  ( ( # ` B ) e. Prime -> ( # ` B ) e. Prime )
4 1 prmcyg
 |-  ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp )
5 2 3 4 syl2anr
 |-  ( ( ( # ` B ) e. Prime /\ G e. SimpGrp ) -> G e. CycGrp )
6 cyggrp
 |-  ( G e. CycGrp -> G e. Grp )
7 6 adantl
 |-  ( ( ( # ` B ) e. Prime /\ G e. CycGrp ) -> G e. Grp )
8 simpl
 |-  ( ( ( # ` B ) e. Prime /\ G e. CycGrp ) -> ( # ` B ) e. Prime )
9 1 7 8 prmgrpsimpgd
 |-  ( ( ( # ` B ) e. Prime /\ G e. CycGrp ) -> G e. SimpGrp )
10 5 9 impbida
 |-  ( ( # ` B ) e. Prime -> ( G e. SimpGrp <-> G e. CycGrp ) )