Metamath Proof Explorer


Theorem prmsimpcyc

Description: A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023)

Ref Expression
Hypothesis prmsimpcyc.1 B = Base G
Assertion prmsimpcyc B G SimpGrp G CycGrp

Proof

Step Hyp Ref Expression
1 prmsimpcyc.1 B = Base G
2 simpggrp G SimpGrp G Grp
3 id B B
4 1 prmcyg G Grp B G CycGrp
5 2 3 4 syl2anr B G SimpGrp G CycGrp
6 cyggrp G CycGrp G Grp
7 6 adantl B G CycGrp G Grp
8 simpl B G CycGrp B
9 1 7 8 prmgrpsimpgd B G CycGrp G SimpGrp
10 5 9 impbida B G SimpGrp G CycGrp