Metamath Proof Explorer


Theorem problem4

Description: Practice problem 4. Clues: pm3.2i eqcomi eqtri subaddrii recni 7re 6re ax-1cn df-7 ax-mp oveq1i 3cn 2cn df-3 mullidi subdiri mp3an mulcli subadd23 oveq2i oveq12i 3t2e6 mulcomi subcli biimpri subadd2i . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses problem4.1 A
problem4.2 B
problem4.3 A+B=3
problem4.4 3A+2B=7
Assertion problem4 A=1B=2

Proof

Step Hyp Ref Expression
1 problem4.1 A
2 problem4.2 B
3 problem4.3 A+B=3
4 problem4.4 3A+2B=7
5 7re 7
6 5 recni 7
7 6re 6
8 7 recni 6
9 ax-1cn 1
10 df-7 7=6+1
11 10 eqcomi 6+1=7
12 6 8 9 11 subaddrii 76=1
13 12 eqcomi 1=76
14 3cn 3
15 2cn 2
16 df-3 3=2+1
17 16 eqcomi 2+1=3
18 14 15 9 17 subaddrii 32=1
19 18 oveq1i 32A=1A
20 1 mullidi 1A=A
21 19 20 eqtri 32A=A
22 21 eqcomi A=32A
23 14 15 1 subdiri 32A=3A2A
24 22 23 eqtri A=3A2A
25 24 oveq1i A+6=3A-2A+6
26 14 1 mulcli 3A
27 15 1 mulcli 2A
28 subadd23 3A2A63A-2A+6=3A+6-2A
29 26 27 8 28 mp3an 3A-2A+6=3A+6-2A
30 3t2e6 32=6
31 1 15 mulcomi A2=2A
32 30 31 oveq12i 32A2=62A
33 32 eqcomi 62A=32A2
34 14 1 15 subdiri 3A2=32A2
35 34 eqcomi 32A2=3A2
36 14 1 subcli 3A
37 15 36 mulcomi 23A=3A2
38 37 eqcomi 3A2=23A
39 14 1 2 3 subaddrii 3A=B
40 39 eqcomi B=3A
41 40 oveq2i 2B=23A
42 41 eqcomi 23A=2B
43 38 42 eqtri 3A2=2B
44 35 43 eqtri 32A2=2B
45 33 44 eqtri 62A=2B
46 45 eqcomi 2B=62A
47 46 oveq2i 3A+2B=3A+6-2A
48 47 eqcomi 3A+6-2A=3A+2B
49 29 48 eqtri 3A-2A+6=3A+2B
50 25 49 eqtri A+6=3A+2B
51 50 4 eqtri A+6=7
52 6 8 1 subadd2i 76=AA+6=7
53 52 biimpri A+6=776=A
54 51 53 ax-mp 76=A
55 13 54 eqtri 1=A
56 55 eqcomi A=1
57 56 oveq2i 3A=31
58 14 9 15 subadd2i 31=22+1=3
59 58 biimpri 2+1=331=2
60 17 59 ax-mp 31=2
61 57 60 eqtri 3A=2
62 40 61 eqtri B=2
63 56 62 pm3.2i A=1B=2