Metamath Proof Explorer


Theorem problem5

Description: Practice problem 5. Clues: 3brtr3i mpbi breqtri ltaddsubi remulcli 2re 3re 9re eqcomi mvlladdi 3cn 6cn eqtr3i 6p3e9 addcomi ltdiv1ii 6re nngt0i 2nn divcan3i recni 2cn 2ne0 mpbir eqtri mulcomi 3t2e6 divmuli . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses problem5.1 A
problem5.2 2A+3<9
Assertion problem5 A<3

Proof

Step Hyp Ref Expression
1 problem5.1 A
2 problem5.2 2A+3<9
3 2re 2
4 3 1 remulcli 2A
5 3re 3
6 9re 9
7 4 5 6 ltaddsubi 2A+3<92A<93
8 2 7 mpbi 2A<93
9 3cn 3
10 6cn 6
11 6p3e9 6+3=9
12 10 9 addcomi 6+3=3+6
13 11 12 eqtr3i 9=3+6
14 13 eqcomi 3+6=9
15 9 10 14 mvlladdi 6=93
16 15 eqcomi 93=6
17 8 16 breqtri 2A<6
18 6re 6
19 2nn 2
20 19 nngt0i 0<2
21 4 18 3 20 ltdiv1ii 2A<62A2<62
22 17 21 mpbi 2A2<62
23 1 recni A
24 2cn 2
25 2ne0 20
26 23 24 25 divcan3i 2A2=A
27 24 9 mulcomi 23=32
28 3t2e6 32=6
29 27 28 eqtri 23=6
30 10 24 9 25 divmuli 62=323=6
31 29 30 mpbir 62=3
32 22 26 31 3brtr3i A<3