Metamath Proof Explorer


Theorem quad3

Description: Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019)

Ref Expression
Hypotheses quad3.1 X
quad3.2 A
quad3.3 A0
quad3.4 B
quad3.5 C
quad3.6 AX2+BX+C=0
Assertion quad3 X=-B+B24AC2AX=-B-B24AC2A

Proof

Step Hyp Ref Expression
1 quad3.1 X
2 quad3.2 A
3 quad3.3 A0
4 quad3.4 B
5 quad3.5 C
6 quad3.6 AX2+BX+C=0
7 2cn 2
8 7 2 mulcli 2A
9 2ne0 20
10 7 2 9 3 mulne0i 2A0
11 4 8 10 divcli B2A
12 1 11 addcli X+B2A
13 8 12 sqmuli 2AX+B2A2=2A2X+B2A2
14 1 11 binom2i X+B2A2=X2+2XB2A+B2A2
15 1 sqcli X2
16 2 15 mulcli AX2
17 4 1 mulcli BX
18 16 17 2 3 divdiri AX2+BXA=AX2A+BXA
19 15 2 3 divcan3i AX2A=X2
20 4 1 2 3 div23i BXA=BAX
21 19 20 oveq12i AX2A+BXA=X2+BAX
22 18 21 eqtr2i X2+BAX=AX2+BXA
23 4 2 3 divcli BA
24 23 1 mulcomi BAX=XBA
25 1 23 mulcli XBA
26 25 7 9 divcan2i 2XBA2=XBA
27 1 23 7 9 divassi XBA2=XBA2
28 2 3 pm3.2i AA0
29 7 9 pm3.2i 220
30 divdiv1 BAA0220BA2=BA2
31 4 28 29 30 mp3an BA2=BA2
32 2 7 mulcomi A2=2A
33 32 oveq2i BA2=B2A
34 31 33 eqtri BA2=B2A
35 34 oveq2i XBA2=XB2A
36 27 35 eqtri XBA2=XB2A
37 36 oveq2i 2XBA2=2XB2A
38 24 26 37 3eqtr2i BAX=2XB2A
39 38 oveq2i X2+BAX=X2+2XB2A
40 16 17 5 addassi AX2+BX+C=AX2+BX+C
41 40 eqcomi AX2+BX+C=AX2+BX+C
42 41 oveq1i AX2+BX+C-C=AX2+BX+C-C
43 16 17 addcli AX2+BX
44 43 5 pncan3oi AX2+BX+C-C=AX2+BX
45 42 44 eqtr2i AX2+BX=AX2+BX+C-C
46 6 oveq1i AX2+BX+C-C=0C
47 df-neg C=0C
48 46 47 eqtr4i AX2+BX+C-C=C
49 45 48 eqtri AX2+BX=C
50 49 oveq1i AX2+BXA=CA
51 22 39 50 3eqtr3i X2+2XB2A=CA
52 51 oveq1i X2+2XB2A+B2A2=CA+B2A2
53 14 52 eqtri X+B2A2=CA+B2A2
54 5 negcli C
55 54 2 3 divcli CA
56 11 sqcli B2A2
57 55 56 addcomi CA+B2A2=B2A2+CA
58 4 8 10 sqdivi B2A2=B22A2
59 4cn 4
60 59 2 mulcli 4A
61 4ne0 40
62 59 2 61 3 mulne0i 4A0
63 60 60 54 2 62 3 divmuldivi 4A4ACA=4AC4AA
64 60 62 dividi 4A4A=1
65 64 eqcomi 1=4A4A
66 65 oveq1i 1CA=4A4ACA
67 55 mullidi 1CA=CA
68 66 67 eqtr3i 4A4ACA=CA
69 5 mulm1i -1C=C
70 69 eqcomi C=-1C
71 70 oveq2i 4AC=4A-1C
72 neg1cn 1
73 60 72 5 mulassi 4A-1C=4A-1C
74 71 73 eqtr4i 4AC=4A-1C
75 60 72 mulcomi 4A-1=-14A
76 75 oveq1i 4A-1C=-14AC
77 72 60 5 mulassi -14AC=-14AC
78 74 76 77 3eqtri 4AC=-14AC
79 59 2 5 mulassi 4AC=4AC
80 79 oveq2i -14AC=-14AC
81 2 5 mulcli AC
82 59 81 mulcli 4AC
83 82 mulm1i -14AC=4AC
84 78 80 83 3eqtri 4AC=4AC
85 2t2e4 22=4
86 85 eqcomi 4=22
87 86 oveq1i 4A=22A
88 87 oveq1i 4AA=22AA
89 7 7 2 mulassi 22A=22A
90 89 oveq1i 22AA=22AA
91 88 90 eqtri 4AA=22AA
92 7 8 mulcomi 22A=2A2
93 92 oveq1i 22AA=2A2A
94 8 7 2 mulassi 2A2A=2A2A
95 91 93 94 3eqtri 4AA=2A2A
96 8 sqvali 2A2=2A2A
97 95 96 eqtr4i 4AA=2A2
98 84 97 oveq12i 4AC4AA=4AC2A2
99 63 68 98 3eqtr3i CA=4AC2A2
100 58 99 oveq12i B2A2+CA=B22A2+4AC2A2
101 4 sqcli B2
102 82 negcli 4AC
103 8 sqcli 2A2
104 8 8 10 10 mulne0i 2A2A0
105 96 104 eqnetri 2A20
106 101 102 103 105 divdiri B2+4AC2A2=B22A2+4AC2A2
107 101 82 negsubi B2+4AC=B24AC
108 107 oveq1i B2+4AC2A2=B24AC2A2
109 100 106 108 3eqtr2i B2A2+CA=B24AC2A2
110 53 57 109 3eqtri X+B2A2=B24AC2A2
111 110 oveq2i 2A2X+B2A2=2A2B24AC2A2
112 101 82 subcli B24AC
113 112 103 105 divcan2i 2A2B24AC2A2=B24AC
114 13 111 113 3eqtri 2AX+B2A2=B24AC
115 8 12 mulcli 2AX+B2A
116 115 112 pm3.2i 2AX+B2AB24AC
117 eqsqrtor 2AX+B2AB24AC2AX+B2A2=B24AC2AX+B2A=B24AC2AX+B2A=B24AC
118 116 117 ax-mp 2AX+B2A2=B24AC2AX+B2A=B24AC2AX+B2A=B24AC
119 114 118 mpbi 2AX+B2A=B24AC2AX+B2A=B24AC
120 sqrtcl B24ACB24AC
121 112 120 ax-mp B24AC
122 121 8 12 10 divmuli B24AC2A=X+B2A2AX+B2A=B24AC
123 eqcom B24AC2A=X+B2AX+B2A=B24AC2A
124 122 123 bitr3i 2AX+B2A=B24ACX+B2A=B24AC2A
125 121 8 10 divcli B24AC2A
126 125 11 1 subadd2i B24AC2AB2A=XX+B2A=B24AC2A
127 eqcom B24AC2AB2A=XX=B24AC2AB2A
128 126 127 bitr3i X+B2A=B24AC2AX=B24AC2AB2A
129 divneg B2A2A0B2A=B2A
130 4 8 10 129 mp3an B2A=B2A
131 130 oveq2i B24AC2A+B2A=B24AC2A+B2A
132 125 11 negsubi B24AC2A+B2A=B24AC2AB2A
133 4 negcli B
134 133 8 10 divcli B2A
135 125 134 addcomi B24AC2A+B2A=B2A+B24AC2A
136 131 132 135 3eqtr3i B24AC2AB2A=B2A+B24AC2A
137 133 121 8 10 divdiri -B+B24AC2A=B2A+B24AC2A
138 136 137 eqtr4i B24AC2AB2A=-B+B24AC2A
139 138 eqeq2i X=B24AC2AB2AX=-B+B24AC2A
140 124 128 139 3bitri 2AX+B2A=B24ACX=-B+B24AC2A
141 121 negcli B24AC
142 141 8 12 10 divmuli B24AC2A=X+B2A2AX+B2A=B24AC
143 eqcom B24AC2A=X+B2AX+B2A=B24AC2A
144 142 143 bitr3i 2AX+B2A=B24ACX+B2A=B24AC2A
145 141 8 10 divcli B24AC2A
146 145 11 1 subadd2i B24AC2AB2A=XX+B2A=B24AC2A
147 eqcom B24AC2AB2A=XX=B24AC2AB2A
148 146 147 bitr3i X+B2A=B24AC2AX=B24AC2AB2A
149 130 oveq2i B24AC2A+B2A=B24AC2A+B2A
150 145 11 negsubi B24AC2A+B2A=B24AC2AB2A
151 145 134 addcomi B24AC2A+B2A=B2A+B24AC2A
152 149 150 151 3eqtr3i B24AC2AB2A=B2A+B24AC2A
153 133 141 8 10 divdiri -B+B24AC2A=B2A+B24AC2A
154 133 121 negsubi -B+B24AC=-B-B24AC
155 154 oveq1i -B+B24AC2A=-B-B24AC2A
156 152 153 155 3eqtr2i B24AC2AB2A=-B-B24AC2A
157 156 eqeq2i X=B24AC2AB2AX=-B-B24AC2A
158 144 148 157 3bitri 2AX+B2A=B24ACX=-B-B24AC2A
159 140 158 orbi12i 2AX+B2A=B24AC2AX+B2A=B24ACX=-B+B24AC2AX=-B-B24AC2A
160 119 159 mpbi X=-B+B24AC2AX=-B-B24AC2A