| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quad3.1 |
|- X e. CC |
| 2 |
|
quad3.2 |
|- A e. CC |
| 3 |
|
quad3.3 |
|- A =/= 0 |
| 4 |
|
quad3.4 |
|- B e. CC |
| 5 |
|
quad3.5 |
|- C e. CC |
| 6 |
|
quad3.6 |
|- ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 |
| 7 |
|
2cn |
|- 2 e. CC |
| 8 |
7 2
|
mulcli |
|- ( 2 x. A ) e. CC |
| 9 |
|
2ne0 |
|- 2 =/= 0 |
| 10 |
7 2 9 3
|
mulne0i |
|- ( 2 x. A ) =/= 0 |
| 11 |
4 8 10
|
divcli |
|- ( B / ( 2 x. A ) ) e. CC |
| 12 |
1 11
|
addcli |
|- ( X + ( B / ( 2 x. A ) ) ) e. CC |
| 13 |
8 12
|
sqmuli |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) |
| 14 |
1 11
|
binom2i |
|- ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 15 |
1
|
sqcli |
|- ( X ^ 2 ) e. CC |
| 16 |
2 15
|
mulcli |
|- ( A x. ( X ^ 2 ) ) e. CC |
| 17 |
4 1
|
mulcli |
|- ( B x. X ) e. CC |
| 18 |
16 17 2 3
|
divdiri |
|- ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) |
| 19 |
15 2 3
|
divcan3i |
|- ( ( A x. ( X ^ 2 ) ) / A ) = ( X ^ 2 ) |
| 20 |
4 1 2 3
|
div23i |
|- ( ( B x. X ) / A ) = ( ( B / A ) x. X ) |
| 21 |
19 20
|
oveq12i |
|- ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) = ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) |
| 22 |
18 21
|
eqtr2i |
|- ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) |
| 23 |
4 2 3
|
divcli |
|- ( B / A ) e. CC |
| 24 |
23 1
|
mulcomi |
|- ( ( B / A ) x. X ) = ( X x. ( B / A ) ) |
| 25 |
1 23
|
mulcli |
|- ( X x. ( B / A ) ) e. CC |
| 26 |
25 7 9
|
divcan2i |
|- ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( X x. ( B / A ) ) |
| 27 |
1 23 7 9
|
divassi |
|- ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( ( B / A ) / 2 ) ) |
| 28 |
2 3
|
pm3.2i |
|- ( A e. CC /\ A =/= 0 ) |
| 29 |
7 9
|
pm3.2i |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 30 |
|
divdiv1 |
|- ( ( B e. CC /\ ( A e. CC /\ A =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) ) ) |
| 31 |
4 28 29 30
|
mp3an |
|- ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) ) |
| 32 |
2 7
|
mulcomi |
|- ( A x. 2 ) = ( 2 x. A ) |
| 33 |
32
|
oveq2i |
|- ( B / ( A x. 2 ) ) = ( B / ( 2 x. A ) ) |
| 34 |
31 33
|
eqtri |
|- ( ( B / A ) / 2 ) = ( B / ( 2 x. A ) ) |
| 35 |
34
|
oveq2i |
|- ( X x. ( ( B / A ) / 2 ) ) = ( X x. ( B / ( 2 x. A ) ) ) |
| 36 |
27 35
|
eqtri |
|- ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( B / ( 2 x. A ) ) ) |
| 37 |
36
|
oveq2i |
|- ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) |
| 38 |
24 26 37
|
3eqtr2i |
|- ( ( B / A ) x. X ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) |
| 39 |
38
|
oveq2i |
|- ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) |
| 40 |
16 17 5
|
addassi |
|- ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) = ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) |
| 41 |
40
|
eqcomi |
|- ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) |
| 42 |
41
|
oveq1i |
|- ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) - C ) |
| 43 |
16 17
|
addcli |
|- ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) e. CC |
| 44 |
43 5
|
pncan3oi |
|- ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) - C ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) |
| 45 |
42 44
|
eqtr2i |
|- ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) |
| 46 |
6
|
oveq1i |
|- ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( 0 - C ) |
| 47 |
|
df-neg |
|- -u C = ( 0 - C ) |
| 48 |
46 47
|
eqtr4i |
|- ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = -u C |
| 49 |
45 48
|
eqtri |
|- ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = -u C |
| 50 |
49
|
oveq1i |
|- ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( -u C / A ) |
| 51 |
22 39 50
|
3eqtr3i |
|- ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) = ( -u C / A ) |
| 52 |
51
|
oveq1i |
|- ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 53 |
14 52
|
eqtri |
|- ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) |
| 54 |
5
|
negcli |
|- -u C e. CC |
| 55 |
54 2 3
|
divcli |
|- ( -u C / A ) e. CC |
| 56 |
11
|
sqcli |
|- ( ( B / ( 2 x. A ) ) ^ 2 ) e. CC |
| 57 |
55 56
|
addcomi |
|- ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) |
| 58 |
4 8 10
|
sqdivi |
|- ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) |
| 59 |
|
4cn |
|- 4 e. CC |
| 60 |
59 2
|
mulcli |
|- ( 4 x. A ) e. CC |
| 61 |
|
4ne0 |
|- 4 =/= 0 |
| 62 |
59 2 61 3
|
mulne0i |
|- ( 4 x. A ) =/= 0 |
| 63 |
60 60 54 2 62 3
|
divmuldivi |
|- ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) |
| 64 |
60 62
|
dividi |
|- ( ( 4 x. A ) / ( 4 x. A ) ) = 1 |
| 65 |
64
|
eqcomi |
|- 1 = ( ( 4 x. A ) / ( 4 x. A ) ) |
| 66 |
65
|
oveq1i |
|- ( 1 x. ( -u C / A ) ) = ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) |
| 67 |
55
|
mullidi |
|- ( 1 x. ( -u C / A ) ) = ( -u C / A ) |
| 68 |
66 67
|
eqtr3i |
|- ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( -u C / A ) |
| 69 |
5
|
mulm1i |
|- ( -u 1 x. C ) = -u C |
| 70 |
69
|
eqcomi |
|- -u C = ( -u 1 x. C ) |
| 71 |
70
|
oveq2i |
|- ( ( 4 x. A ) x. -u C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) ) |
| 72 |
|
neg1cn |
|- -u 1 e. CC |
| 73 |
60 72 5
|
mulassi |
|- ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) ) |
| 74 |
71 73
|
eqtr4i |
|- ( ( 4 x. A ) x. -u C ) = ( ( ( 4 x. A ) x. -u 1 ) x. C ) |
| 75 |
60 72
|
mulcomi |
|- ( ( 4 x. A ) x. -u 1 ) = ( -u 1 x. ( 4 x. A ) ) |
| 76 |
75
|
oveq1i |
|- ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( -u 1 x. ( 4 x. A ) ) x. C ) |
| 77 |
72 60 5
|
mulassi |
|- ( ( -u 1 x. ( 4 x. A ) ) x. C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) ) |
| 78 |
74 76 77
|
3eqtri |
|- ( ( 4 x. A ) x. -u C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) ) |
| 79 |
59 2 5
|
mulassi |
|- ( ( 4 x. A ) x. C ) = ( 4 x. ( A x. C ) ) |
| 80 |
79
|
oveq2i |
|- ( -u 1 x. ( ( 4 x. A ) x. C ) ) = ( -u 1 x. ( 4 x. ( A x. C ) ) ) |
| 81 |
2 5
|
mulcli |
|- ( A x. C ) e. CC |
| 82 |
59 81
|
mulcli |
|- ( 4 x. ( A x. C ) ) e. CC |
| 83 |
82
|
mulm1i |
|- ( -u 1 x. ( 4 x. ( A x. C ) ) ) = -u ( 4 x. ( A x. C ) ) |
| 84 |
78 80 83
|
3eqtri |
|- ( ( 4 x. A ) x. -u C ) = -u ( 4 x. ( A x. C ) ) |
| 85 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 86 |
85
|
eqcomi |
|- 4 = ( 2 x. 2 ) |
| 87 |
86
|
oveq1i |
|- ( 4 x. A ) = ( ( 2 x. 2 ) x. A ) |
| 88 |
87
|
oveq1i |
|- ( ( 4 x. A ) x. A ) = ( ( ( 2 x. 2 ) x. A ) x. A ) |
| 89 |
7 7 2
|
mulassi |
|- ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) |
| 90 |
89
|
oveq1i |
|- ( ( ( 2 x. 2 ) x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A ) |
| 91 |
88 90
|
eqtri |
|- ( ( 4 x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A ) |
| 92 |
7 8
|
mulcomi |
|- ( 2 x. ( 2 x. A ) ) = ( ( 2 x. A ) x. 2 ) |
| 93 |
92
|
oveq1i |
|- ( ( 2 x. ( 2 x. A ) ) x. A ) = ( ( ( 2 x. A ) x. 2 ) x. A ) |
| 94 |
8 7 2
|
mulassi |
|- ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) |
| 95 |
91 93 94
|
3eqtri |
|- ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) |
| 96 |
8
|
sqvali |
|- ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) |
| 97 |
95 96
|
eqtr4i |
|- ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) ^ 2 ) |
| 98 |
84 97
|
oveq12i |
|- ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) |
| 99 |
63 68 98
|
3eqtr3i |
|- ( -u C / A ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) |
| 100 |
58 99
|
oveq12i |
|- ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
| 101 |
4
|
sqcli |
|- ( B ^ 2 ) e. CC |
| 102 |
82
|
negcli |
|- -u ( 4 x. ( A x. C ) ) e. CC |
| 103 |
8
|
sqcli |
|- ( ( 2 x. A ) ^ 2 ) e. CC |
| 104 |
8 8 10 10
|
mulne0i |
|- ( ( 2 x. A ) x. ( 2 x. A ) ) =/= 0 |
| 105 |
96 104
|
eqnetri |
|- ( ( 2 x. A ) ^ 2 ) =/= 0 |
| 106 |
101 102 103 105
|
divdiri |
|- ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
| 107 |
101 82
|
negsubi |
|- ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) |
| 108 |
107
|
oveq1i |
|- ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) |
| 109 |
100 106 108
|
3eqtr2i |
|- ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) |
| 110 |
53 57 109
|
3eqtri |
|- ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) |
| 111 |
110
|
oveq2i |
|- ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
| 112 |
101 82
|
subcli |
|- ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC |
| 113 |
112 103 105
|
divcan2i |
|- ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) |
| 114 |
13 111 113
|
3eqtri |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) |
| 115 |
8 12
|
mulcli |
|- ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC |
| 116 |
115 112
|
pm3.2i |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) |
| 117 |
|
eqsqrtor |
|- ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) -> ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) ) |
| 118 |
116 117
|
ax-mp |
|- ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) |
| 119 |
114 118
|
mpbi |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) |
| 120 |
|
sqrtcl |
|- ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC -> ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC ) |
| 121 |
112 120
|
ax-mp |
|- ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC |
| 122 |
121 8 12 10
|
divmuli |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) |
| 123 |
|
eqcom |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 124 |
122 123
|
bitr3i |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 125 |
121 8 10
|
divcli |
|- ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC |
| 126 |
125 11 1
|
subadd2i |
|- ( ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 127 |
|
eqcom |
|- ( ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) |
| 128 |
126 127
|
bitr3i |
|- ( ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) |
| 129 |
|
divneg |
|- ( ( B e. CC /\ ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) -> -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) ) ) |
| 130 |
4 8 10 129
|
mp3an |
|- -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) ) |
| 131 |
130
|
oveq2i |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) |
| 132 |
125 11
|
negsubi |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) |
| 133 |
4
|
negcli |
|- -u B e. CC |
| 134 |
133 8 10
|
divcli |
|- ( -u B / ( 2 x. A ) ) e. CC |
| 135 |
125 134
|
addcomi |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 136 |
131 132 135
|
3eqtr3i |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 137 |
133 121 8 10
|
divdiri |
|- ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 138 |
136 137
|
eqtr4i |
|- ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) |
| 139 |
138
|
eqeq2i |
|- ( X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
| 140 |
124 128 139
|
3bitri |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
| 141 |
121
|
negcli |
|- -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC |
| 142 |
141 8 12 10
|
divmuli |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) |
| 143 |
|
eqcom |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 144 |
142 143
|
bitr3i |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 145 |
141 8 10
|
divcli |
|- ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC |
| 146 |
145 11 1
|
subadd2i |
|- ( ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 147 |
|
eqcom |
|- ( ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) |
| 148 |
146 147
|
bitr3i |
|- ( ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) |
| 149 |
130
|
oveq2i |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) |
| 150 |
145 11
|
negsubi |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) |
| 151 |
145 134
|
addcomi |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 152 |
149 150 151
|
3eqtr3i |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 153 |
133 141 8 10
|
divdiri |
|- ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) |
| 154 |
133 121
|
negsubi |
|- ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) = ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) |
| 155 |
154
|
oveq1i |
|- ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) |
| 156 |
152 153 155
|
3eqtr2i |
|- ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) |
| 157 |
156
|
eqeq2i |
|- ( X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
| 158 |
144 148 157
|
3bitri |
|- ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
| 159 |
140 158
|
orbi12i |
|- ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) <-> ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) |
| 160 |
119 159
|
mpbi |
|- ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |