Metamath Proof Explorer


Theorem quad3

Description: Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019)

Ref Expression
Hypotheses quad3.1
|- X e. CC
quad3.2
|- A e. CC
quad3.3
|- A =/= 0
quad3.4
|- B e. CC
quad3.5
|- C e. CC
quad3.6
|- ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0
Assertion quad3
|- ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) )

Proof

Step Hyp Ref Expression
1 quad3.1
 |-  X e. CC
2 quad3.2
 |-  A e. CC
3 quad3.3
 |-  A =/= 0
4 quad3.4
 |-  B e. CC
5 quad3.5
 |-  C e. CC
6 quad3.6
 |-  ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0
7 2cn
 |-  2 e. CC
8 7 2 mulcli
 |-  ( 2 x. A ) e. CC
9 2ne0
 |-  2 =/= 0
10 7 2 9 3 mulne0i
 |-  ( 2 x. A ) =/= 0
11 4 8 10 divcli
 |-  ( B / ( 2 x. A ) ) e. CC
12 1 11 addcli
 |-  ( X + ( B / ( 2 x. A ) ) ) e. CC
13 8 12 sqmuli
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) )
14 1 11 binom2i
 |-  ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) )
15 1 sqcli
 |-  ( X ^ 2 ) e. CC
16 2 15 mulcli
 |-  ( A x. ( X ^ 2 ) ) e. CC
17 4 1 mulcli
 |-  ( B x. X ) e. CC
18 16 17 2 3 divdiri
 |-  ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) )
19 15 2 3 divcan3i
 |-  ( ( A x. ( X ^ 2 ) ) / A ) = ( X ^ 2 )
20 4 1 2 3 div23i
 |-  ( ( B x. X ) / A ) = ( ( B / A ) x. X )
21 19 20 oveq12i
 |-  ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) = ( ( X ^ 2 ) + ( ( B / A ) x. X ) )
22 18 21 eqtr2i
 |-  ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A )
23 4 2 3 divcli
 |-  ( B / A ) e. CC
24 23 1 mulcomi
 |-  ( ( B / A ) x. X ) = ( X x. ( B / A ) )
25 1 23 mulcli
 |-  ( X x. ( B / A ) ) e. CC
26 25 7 9 divcan2i
 |-  ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( X x. ( B / A ) )
27 1 23 7 9 divassi
 |-  ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( ( B / A ) / 2 ) )
28 2 3 pm3.2i
 |-  ( A e. CC /\ A =/= 0 )
29 7 9 pm3.2i
 |-  ( 2 e. CC /\ 2 =/= 0 )
30 divdiv1
 |-  ( ( B e. CC /\ ( A e. CC /\ A =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) ) )
31 4 28 29 30 mp3an
 |-  ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) )
32 2 7 mulcomi
 |-  ( A x. 2 ) = ( 2 x. A )
33 32 oveq2i
 |-  ( B / ( A x. 2 ) ) = ( B / ( 2 x. A ) )
34 31 33 eqtri
 |-  ( ( B / A ) / 2 ) = ( B / ( 2 x. A ) )
35 34 oveq2i
 |-  ( X x. ( ( B / A ) / 2 ) ) = ( X x. ( B / ( 2 x. A ) ) )
36 27 35 eqtri
 |-  ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( B / ( 2 x. A ) ) )
37 36 oveq2i
 |-  ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) )
38 24 26 37 3eqtr2i
 |-  ( ( B / A ) x. X ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) )
39 38 oveq2i
 |-  ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) )
40 16 17 5 addassi
 |-  ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) = ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) )
41 40 eqcomi
 |-  ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C )
42 41 oveq1i
 |-  ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) - C )
43 16 17 addcli
 |-  ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) e. CC
44 43 5 pncan3oi
 |-  ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) - C ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) )
45 42 44 eqtr2i
 |-  ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C )
46 6 oveq1i
 |-  ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( 0 - C )
47 df-neg
 |-  -u C = ( 0 - C )
48 46 47 eqtr4i
 |-  ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = -u C
49 45 48 eqtri
 |-  ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = -u C
50 49 oveq1i
 |-  ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( -u C / A )
51 22 39 50 3eqtr3i
 |-  ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) = ( -u C / A )
52 51 oveq1i
 |-  ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) )
53 14 52 eqtri
 |-  ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) )
54 5 negcli
 |-  -u C e. CC
55 54 2 3 divcli
 |-  ( -u C / A ) e. CC
56 11 sqcli
 |-  ( ( B / ( 2 x. A ) ) ^ 2 ) e. CC
57 55 56 addcomi
 |-  ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) )
58 4 8 10 sqdivi
 |-  ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) )
59 4cn
 |-  4 e. CC
60 59 2 mulcli
 |-  ( 4 x. A ) e. CC
61 4ne0
 |-  4 =/= 0
62 59 2 61 3 mulne0i
 |-  ( 4 x. A ) =/= 0
63 60 60 54 2 62 3 divmuldivi
 |-  ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) )
64 60 62 dividi
 |-  ( ( 4 x. A ) / ( 4 x. A ) ) = 1
65 64 eqcomi
 |-  1 = ( ( 4 x. A ) / ( 4 x. A ) )
66 65 oveq1i
 |-  ( 1 x. ( -u C / A ) ) = ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) )
67 55 mulid2i
 |-  ( 1 x. ( -u C / A ) ) = ( -u C / A )
68 66 67 eqtr3i
 |-  ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( -u C / A )
69 5 mulm1i
 |-  ( -u 1 x. C ) = -u C
70 69 eqcomi
 |-  -u C = ( -u 1 x. C )
71 70 oveq2i
 |-  ( ( 4 x. A ) x. -u C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) )
72 neg1cn
 |-  -u 1 e. CC
73 60 72 5 mulassi
 |-  ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) )
74 71 73 eqtr4i
 |-  ( ( 4 x. A ) x. -u C ) = ( ( ( 4 x. A ) x. -u 1 ) x. C )
75 60 72 mulcomi
 |-  ( ( 4 x. A ) x. -u 1 ) = ( -u 1 x. ( 4 x. A ) )
76 75 oveq1i
 |-  ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( -u 1 x. ( 4 x. A ) ) x. C )
77 72 60 5 mulassi
 |-  ( ( -u 1 x. ( 4 x. A ) ) x. C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) )
78 74 76 77 3eqtri
 |-  ( ( 4 x. A ) x. -u C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) )
79 59 2 5 mulassi
 |-  ( ( 4 x. A ) x. C ) = ( 4 x. ( A x. C ) )
80 79 oveq2i
 |-  ( -u 1 x. ( ( 4 x. A ) x. C ) ) = ( -u 1 x. ( 4 x. ( A x. C ) ) )
81 2 5 mulcli
 |-  ( A x. C ) e. CC
82 59 81 mulcli
 |-  ( 4 x. ( A x. C ) ) e. CC
83 82 mulm1i
 |-  ( -u 1 x. ( 4 x. ( A x. C ) ) ) = -u ( 4 x. ( A x. C ) )
84 78 80 83 3eqtri
 |-  ( ( 4 x. A ) x. -u C ) = -u ( 4 x. ( A x. C ) )
85 2t2e4
 |-  ( 2 x. 2 ) = 4
86 85 eqcomi
 |-  4 = ( 2 x. 2 )
87 86 oveq1i
 |-  ( 4 x. A ) = ( ( 2 x. 2 ) x. A )
88 87 oveq1i
 |-  ( ( 4 x. A ) x. A ) = ( ( ( 2 x. 2 ) x. A ) x. A )
89 7 7 2 mulassi
 |-  ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) )
90 89 oveq1i
 |-  ( ( ( 2 x. 2 ) x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A )
91 88 90 eqtri
 |-  ( ( 4 x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A )
92 7 8 mulcomi
 |-  ( 2 x. ( 2 x. A ) ) = ( ( 2 x. A ) x. 2 )
93 92 oveq1i
 |-  ( ( 2 x. ( 2 x. A ) ) x. A ) = ( ( ( 2 x. A ) x. 2 ) x. A )
94 8 7 2 mulassi
 |-  ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) )
95 91 93 94 3eqtri
 |-  ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) )
96 8 sqvali
 |-  ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) )
97 95 96 eqtr4i
 |-  ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) ^ 2 )
98 84 97 oveq12i
 |-  ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) )
99 63 68 98 3eqtr3i
 |-  ( -u C / A ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) )
100 58 99 oveq12i
 |-  ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) )
101 4 sqcli
 |-  ( B ^ 2 ) e. CC
102 82 negcli
 |-  -u ( 4 x. ( A x. C ) ) e. CC
103 8 sqcli
 |-  ( ( 2 x. A ) ^ 2 ) e. CC
104 8 8 10 10 mulne0i
 |-  ( ( 2 x. A ) x. ( 2 x. A ) ) =/= 0
105 96 104 eqnetri
 |-  ( ( 2 x. A ) ^ 2 ) =/= 0
106 101 102 103 105 divdiri
 |-  ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) )
107 101 82 negsubi
 |-  ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) )
108 107 oveq1i
 |-  ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) )
109 100 106 108 3eqtr2i
 |-  ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) )
110 53 57 109 3eqtri
 |-  ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) )
111 110 oveq2i
 |-  ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) )
112 101 82 subcli
 |-  ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC
113 112 103 105 divcan2i
 |-  ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) )
114 13 111 113 3eqtri
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) )
115 8 12 mulcli
 |-  ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC
116 115 112 pm3.2i
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC )
117 eqsqrtor
 |-  ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) -> ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) )
118 116 117 ax-mp
 |-  ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) )
119 114 118 mpbi
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) )
120 sqrtcl
 |-  ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC -> ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC )
121 112 120 ax-mp
 |-  ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC
122 121 8 12 10 divmuli
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) )
123 eqcom
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
124 122 123 bitr3i
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
125 121 8 10 divcli
 |-  ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC
126 125 11 1 subadd2i
 |-  ( ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
127 eqcom
 |-  ( ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) )
128 126 127 bitr3i
 |-  ( ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) )
129 divneg
 |-  ( ( B e. CC /\ ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) -> -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) ) )
130 4 8 10 129 mp3an
 |-  -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) )
131 130 oveq2i
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) )
132 125 11 negsubi
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) )
133 4 negcli
 |-  -u B e. CC
134 133 8 10 divcli
 |-  ( -u B / ( 2 x. A ) ) e. CC
135 125 134 addcomi
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
136 131 132 135 3eqtr3i
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
137 133 121 8 10 divdiri
 |-  ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
138 136 137 eqtr4i
 |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) )
139 138 eqeq2i
 |-  ( X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) )
140 124 128 139 3bitri
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) )
141 121 negcli
 |-  -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC
142 141 8 12 10 divmuli
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) )
143 eqcom
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
144 142 143 bitr3i
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
145 141 8 10 divcli
 |-  ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC
146 145 11 1 subadd2i
 |-  ( ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
147 eqcom
 |-  ( ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) )
148 146 147 bitr3i
 |-  ( ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) )
149 130 oveq2i
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) )
150 145 11 negsubi
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) )
151 145 134 addcomi
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
152 149 150 151 3eqtr3i
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
153 133 141 8 10 divdiri
 |-  ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) )
154 133 121 negsubi
 |-  ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) = ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) )
155 154 oveq1i
 |-  ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) )
156 152 153 155 3eqtr2i
 |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) )
157 156 eqeq2i
 |-  ( X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) )
158 144 148 157 3bitri
 |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) )
159 140 158 orbi12i
 |-  ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) <-> ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) )
160 119 159 mpbi
 |-  ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) )