| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quad3.1 |  |-  X e. CC | 
						
							| 2 |  | quad3.2 |  |-  A e. CC | 
						
							| 3 |  | quad3.3 |  |-  A =/= 0 | 
						
							| 4 |  | quad3.4 |  |-  B e. CC | 
						
							| 5 |  | quad3.5 |  |-  C e. CC | 
						
							| 6 |  | quad3.6 |  |-  ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 | 
						
							| 7 |  | 2cn |  |-  2 e. CC | 
						
							| 8 | 7 2 | mulcli |  |-  ( 2 x. A ) e. CC | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 7 2 9 3 | mulne0i |  |-  ( 2 x. A ) =/= 0 | 
						
							| 11 | 4 8 10 | divcli |  |-  ( B / ( 2 x. A ) ) e. CC | 
						
							| 12 | 1 11 | addcli |  |-  ( X + ( B / ( 2 x. A ) ) ) e. CC | 
						
							| 13 | 8 12 | sqmuli |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) | 
						
							| 14 | 1 11 | binom2i |  |-  ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) | 
						
							| 15 | 1 | sqcli |  |-  ( X ^ 2 ) e. CC | 
						
							| 16 | 2 15 | mulcli |  |-  ( A x. ( X ^ 2 ) ) e. CC | 
						
							| 17 | 4 1 | mulcli |  |-  ( B x. X ) e. CC | 
						
							| 18 | 16 17 2 3 | divdiri |  |-  ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) | 
						
							| 19 | 15 2 3 | divcan3i |  |-  ( ( A x. ( X ^ 2 ) ) / A ) = ( X ^ 2 ) | 
						
							| 20 | 4 1 2 3 | div23i |  |-  ( ( B x. X ) / A ) = ( ( B / A ) x. X ) | 
						
							| 21 | 19 20 | oveq12i |  |-  ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) = ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) | 
						
							| 22 | 18 21 | eqtr2i |  |-  ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) | 
						
							| 23 | 4 2 3 | divcli |  |-  ( B / A ) e. CC | 
						
							| 24 | 23 1 | mulcomi |  |-  ( ( B / A ) x. X ) = ( X x. ( B / A ) ) | 
						
							| 25 | 1 23 | mulcli |  |-  ( X x. ( B / A ) ) e. CC | 
						
							| 26 | 25 7 9 | divcan2i |  |-  ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( X x. ( B / A ) ) | 
						
							| 27 | 1 23 7 9 | divassi |  |-  ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( ( B / A ) / 2 ) ) | 
						
							| 28 | 2 3 | pm3.2i |  |-  ( A e. CC /\ A =/= 0 ) | 
						
							| 29 | 7 9 | pm3.2i |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 30 |  | divdiv1 |  |-  ( ( B e. CC /\ ( A e. CC /\ A =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) ) ) | 
						
							| 31 | 4 28 29 30 | mp3an |  |-  ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) ) | 
						
							| 32 | 2 7 | mulcomi |  |-  ( A x. 2 ) = ( 2 x. A ) | 
						
							| 33 | 32 | oveq2i |  |-  ( B / ( A x. 2 ) ) = ( B / ( 2 x. A ) ) | 
						
							| 34 | 31 33 | eqtri |  |-  ( ( B / A ) / 2 ) = ( B / ( 2 x. A ) ) | 
						
							| 35 | 34 | oveq2i |  |-  ( X x. ( ( B / A ) / 2 ) ) = ( X x. ( B / ( 2 x. A ) ) ) | 
						
							| 36 | 27 35 | eqtri |  |-  ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( B / ( 2 x. A ) ) ) | 
						
							| 37 | 36 | oveq2i |  |-  ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) | 
						
							| 38 | 24 26 37 | 3eqtr2i |  |-  ( ( B / A ) x. X ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) | 
						
							| 39 | 38 | oveq2i |  |-  ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) | 
						
							| 40 | 16 17 5 | addassi |  |-  ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) = ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) | 
						
							| 41 | 40 | eqcomi |  |-  ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) | 
						
							| 42 | 41 | oveq1i |  |-  ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) - C ) | 
						
							| 43 | 16 17 | addcli |  |-  ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) e. CC | 
						
							| 44 | 43 5 | pncan3oi |  |-  ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) - C ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) | 
						
							| 45 | 42 44 | eqtr2i |  |-  ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) | 
						
							| 46 | 6 | oveq1i |  |-  ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( 0 - C ) | 
						
							| 47 |  | df-neg |  |-  -u C = ( 0 - C ) | 
						
							| 48 | 46 47 | eqtr4i |  |-  ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = -u C | 
						
							| 49 | 45 48 | eqtri |  |-  ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = -u C | 
						
							| 50 | 49 | oveq1i |  |-  ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( -u C / A ) | 
						
							| 51 | 22 39 50 | 3eqtr3i |  |-  ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) = ( -u C / A ) | 
						
							| 52 | 51 | oveq1i |  |-  ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) | 
						
							| 53 | 14 52 | eqtri |  |-  ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) | 
						
							| 54 | 5 | negcli |  |-  -u C e. CC | 
						
							| 55 | 54 2 3 | divcli |  |-  ( -u C / A ) e. CC | 
						
							| 56 | 11 | sqcli |  |-  ( ( B / ( 2 x. A ) ) ^ 2 ) e. CC | 
						
							| 57 | 55 56 | addcomi |  |-  ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) | 
						
							| 58 | 4 8 10 | sqdivi |  |-  ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) | 
						
							| 59 |  | 4cn |  |-  4 e. CC | 
						
							| 60 | 59 2 | mulcli |  |-  ( 4 x. A ) e. CC | 
						
							| 61 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 62 | 59 2 61 3 | mulne0i |  |-  ( 4 x. A ) =/= 0 | 
						
							| 63 | 60 60 54 2 62 3 | divmuldivi |  |-  ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) | 
						
							| 64 | 60 62 | dividi |  |-  ( ( 4 x. A ) / ( 4 x. A ) ) = 1 | 
						
							| 65 | 64 | eqcomi |  |-  1 = ( ( 4 x. A ) / ( 4 x. A ) ) | 
						
							| 66 | 65 | oveq1i |  |-  ( 1 x. ( -u C / A ) ) = ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) | 
						
							| 67 | 55 | mullidi |  |-  ( 1 x. ( -u C / A ) ) = ( -u C / A ) | 
						
							| 68 | 66 67 | eqtr3i |  |-  ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( -u C / A ) | 
						
							| 69 | 5 | mulm1i |  |-  ( -u 1 x. C ) = -u C | 
						
							| 70 | 69 | eqcomi |  |-  -u C = ( -u 1 x. C ) | 
						
							| 71 | 70 | oveq2i |  |-  ( ( 4 x. A ) x. -u C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) ) | 
						
							| 72 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 73 | 60 72 5 | mulassi |  |-  ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) ) | 
						
							| 74 | 71 73 | eqtr4i |  |-  ( ( 4 x. A ) x. -u C ) = ( ( ( 4 x. A ) x. -u 1 ) x. C ) | 
						
							| 75 | 60 72 | mulcomi |  |-  ( ( 4 x. A ) x. -u 1 ) = ( -u 1 x. ( 4 x. A ) ) | 
						
							| 76 | 75 | oveq1i |  |-  ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( -u 1 x. ( 4 x. A ) ) x. C ) | 
						
							| 77 | 72 60 5 | mulassi |  |-  ( ( -u 1 x. ( 4 x. A ) ) x. C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) ) | 
						
							| 78 | 74 76 77 | 3eqtri |  |-  ( ( 4 x. A ) x. -u C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) ) | 
						
							| 79 | 59 2 5 | mulassi |  |-  ( ( 4 x. A ) x. C ) = ( 4 x. ( A x. C ) ) | 
						
							| 80 | 79 | oveq2i |  |-  ( -u 1 x. ( ( 4 x. A ) x. C ) ) = ( -u 1 x. ( 4 x. ( A x. C ) ) ) | 
						
							| 81 | 2 5 | mulcli |  |-  ( A x. C ) e. CC | 
						
							| 82 | 59 81 | mulcli |  |-  ( 4 x. ( A x. C ) ) e. CC | 
						
							| 83 | 82 | mulm1i |  |-  ( -u 1 x. ( 4 x. ( A x. C ) ) ) = -u ( 4 x. ( A x. C ) ) | 
						
							| 84 | 78 80 83 | 3eqtri |  |-  ( ( 4 x. A ) x. -u C ) = -u ( 4 x. ( A x. C ) ) | 
						
							| 85 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 86 | 85 | eqcomi |  |-  4 = ( 2 x. 2 ) | 
						
							| 87 | 86 | oveq1i |  |-  ( 4 x. A ) = ( ( 2 x. 2 ) x. A ) | 
						
							| 88 | 87 | oveq1i |  |-  ( ( 4 x. A ) x. A ) = ( ( ( 2 x. 2 ) x. A ) x. A ) | 
						
							| 89 | 7 7 2 | mulassi |  |-  ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) | 
						
							| 90 | 89 | oveq1i |  |-  ( ( ( 2 x. 2 ) x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A ) | 
						
							| 91 | 88 90 | eqtri |  |-  ( ( 4 x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A ) | 
						
							| 92 | 7 8 | mulcomi |  |-  ( 2 x. ( 2 x. A ) ) = ( ( 2 x. A ) x. 2 ) | 
						
							| 93 | 92 | oveq1i |  |-  ( ( 2 x. ( 2 x. A ) ) x. A ) = ( ( ( 2 x. A ) x. 2 ) x. A ) | 
						
							| 94 | 8 7 2 | mulassi |  |-  ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) | 
						
							| 95 | 91 93 94 | 3eqtri |  |-  ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) | 
						
							| 96 | 8 | sqvali |  |-  ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) | 
						
							| 97 | 95 96 | eqtr4i |  |-  ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) ^ 2 ) | 
						
							| 98 | 84 97 | oveq12i |  |-  ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) | 
						
							| 99 | 63 68 98 | 3eqtr3i |  |-  ( -u C / A ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) | 
						
							| 100 | 58 99 | oveq12i |  |-  ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) | 
						
							| 101 | 4 | sqcli |  |-  ( B ^ 2 ) e. CC | 
						
							| 102 | 82 | negcli |  |-  -u ( 4 x. ( A x. C ) ) e. CC | 
						
							| 103 | 8 | sqcli |  |-  ( ( 2 x. A ) ^ 2 ) e. CC | 
						
							| 104 | 8 8 10 10 | mulne0i |  |-  ( ( 2 x. A ) x. ( 2 x. A ) ) =/= 0 | 
						
							| 105 | 96 104 | eqnetri |  |-  ( ( 2 x. A ) ^ 2 ) =/= 0 | 
						
							| 106 | 101 102 103 105 | divdiri |  |-  ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) | 
						
							| 107 | 101 82 | negsubi |  |-  ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) | 
						
							| 108 | 107 | oveq1i |  |-  ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) | 
						
							| 109 | 100 106 108 | 3eqtr2i |  |-  ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) | 
						
							| 110 | 53 57 109 | 3eqtri |  |-  ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) | 
						
							| 111 | 110 | oveq2i |  |-  ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) | 
						
							| 112 | 101 82 | subcli |  |-  ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC | 
						
							| 113 | 112 103 105 | divcan2i |  |-  ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) | 
						
							| 114 | 13 111 113 | 3eqtri |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) | 
						
							| 115 | 8 12 | mulcli |  |-  ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC | 
						
							| 116 | 115 112 | pm3.2i |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) | 
						
							| 117 |  | eqsqrtor |  |-  ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) -> ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) ) | 
						
							| 118 | 116 117 | ax-mp |  |-  ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) | 
						
							| 119 | 114 118 | mpbi |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) | 
						
							| 120 |  | sqrtcl |  |-  ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC -> ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC ) | 
						
							| 121 | 112 120 | ax-mp |  |-  ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC | 
						
							| 122 | 121 8 12 10 | divmuli |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) | 
						
							| 123 |  | eqcom |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 124 | 122 123 | bitr3i |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 125 | 121 8 10 | divcli |  |-  ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC | 
						
							| 126 | 125 11 1 | subadd2i |  |-  ( ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 127 |  | eqcom |  |-  ( ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) | 
						
							| 128 | 126 127 | bitr3i |  |-  ( ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) | 
						
							| 129 |  | divneg |  |-  ( ( B e. CC /\ ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) -> -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) ) ) | 
						
							| 130 | 4 8 10 129 | mp3an |  |-  -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) ) | 
						
							| 131 | 130 | oveq2i |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) | 
						
							| 132 | 125 11 | negsubi |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) | 
						
							| 133 | 4 | negcli |  |-  -u B e. CC | 
						
							| 134 | 133 8 10 | divcli |  |-  ( -u B / ( 2 x. A ) ) e. CC | 
						
							| 135 | 125 134 | addcomi |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 136 | 131 132 135 | 3eqtr3i |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 137 | 133 121 8 10 | divdiri |  |-  ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 138 | 136 137 | eqtr4i |  |-  ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) | 
						
							| 139 | 138 | eqeq2i |  |-  ( X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 140 | 124 128 139 | 3bitri |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 141 | 121 | negcli |  |-  -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC | 
						
							| 142 | 141 8 12 10 | divmuli |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) | 
						
							| 143 |  | eqcom |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) = ( X + ( B / ( 2 x. A ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 144 | 142 143 | bitr3i |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 145 | 141 8 10 | divcli |  |-  ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC | 
						
							| 146 | 145 11 1 | subadd2i |  |-  ( ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 147 |  | eqcom |  |-  ( ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = X <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) | 
						
							| 148 | 146 147 | bitr3i |  |-  ( ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) | 
						
							| 149 | 130 | oveq2i |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) | 
						
							| 150 | 145 11 | negsubi |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) | 
						
							| 151 | 145 134 | addcomi |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 152 | 149 150 151 | 3eqtr3i |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 153 | 133 141 8 10 | divdiri |  |-  ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 154 | 133 121 | negsubi |  |-  ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) = ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) | 
						
							| 155 | 154 | oveq1i |  |-  ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) | 
						
							| 156 | 152 153 155 | 3eqtr2i |  |-  ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) | 
						
							| 157 | 156 | eqeq2i |  |-  ( X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 158 | 144 148 157 | 3bitri |  |-  ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) | 
						
							| 159 | 140 158 | orbi12i |  |-  ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) <-> ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) | 
						
							| 160 | 119 159 | mpbi |  |-  ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |