Metamath Proof Explorer


Theorem problem5

Description: Practice problem 5. Clues: 3brtr3i mpbi breqtri ltaddsubi remulcli 2re 3re 9re eqcomi mvlladdi 3cn 6cn eqtr3i 6p3e9 addcomi ltdiv1ii 6re nngt0i 2nn divcan3i recni 2cn 2ne0 mpbir eqtri mulcomi 3t2e6 divmuli . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses problem5.1
|- A e. RR
problem5.2
|- ( ( 2 x. A ) + 3 ) < 9
Assertion problem5
|- A < 3

Proof

Step Hyp Ref Expression
1 problem5.1
 |-  A e. RR
2 problem5.2
 |-  ( ( 2 x. A ) + 3 ) < 9
3 2re
 |-  2 e. RR
4 3 1 remulcli
 |-  ( 2 x. A ) e. RR
5 3re
 |-  3 e. RR
6 9re
 |-  9 e. RR
7 4 5 6 ltaddsubi
 |-  ( ( ( 2 x. A ) + 3 ) < 9 <-> ( 2 x. A ) < ( 9 - 3 ) )
8 2 7 mpbi
 |-  ( 2 x. A ) < ( 9 - 3 )
9 3cn
 |-  3 e. CC
10 6cn
 |-  6 e. CC
11 6p3e9
 |-  ( 6 + 3 ) = 9
12 10 9 addcomi
 |-  ( 6 + 3 ) = ( 3 + 6 )
13 11 12 eqtr3i
 |-  9 = ( 3 + 6 )
14 13 eqcomi
 |-  ( 3 + 6 ) = 9
15 9 10 14 mvlladdi
 |-  6 = ( 9 - 3 )
16 15 eqcomi
 |-  ( 9 - 3 ) = 6
17 8 16 breqtri
 |-  ( 2 x. A ) < 6
18 6re
 |-  6 e. RR
19 2nn
 |-  2 e. NN
20 19 nngt0i
 |-  0 < 2
21 4 18 3 20 ltdiv1ii
 |-  ( ( 2 x. A ) < 6 <-> ( ( 2 x. A ) / 2 ) < ( 6 / 2 ) )
22 17 21 mpbi
 |-  ( ( 2 x. A ) / 2 ) < ( 6 / 2 )
23 1 recni
 |-  A e. CC
24 2cn
 |-  2 e. CC
25 2ne0
 |-  2 =/= 0
26 23 24 25 divcan3i
 |-  ( ( 2 x. A ) / 2 ) = A
27 24 9 mulcomi
 |-  ( 2 x. 3 ) = ( 3 x. 2 )
28 3t2e6
 |-  ( 3 x. 2 ) = 6
29 27 28 eqtri
 |-  ( 2 x. 3 ) = 6
30 10 24 9 25 divmuli
 |-  ( ( 6 / 2 ) = 3 <-> ( 2 x. 3 ) = 6 )
31 29 30 mpbir
 |-  ( 6 / 2 ) = 3
32 22 26 31 3brtr3i
 |-  A < 3