Step |
Hyp |
Ref |
Expression |
1 |
|
problem5.1 |
|- A e. RR |
2 |
|
problem5.2 |
|- ( ( 2 x. A ) + 3 ) < 9 |
3 |
|
2re |
|- 2 e. RR |
4 |
3 1
|
remulcli |
|- ( 2 x. A ) e. RR |
5 |
|
3re |
|- 3 e. RR |
6 |
|
9re |
|- 9 e. RR |
7 |
4 5 6
|
ltaddsubi |
|- ( ( ( 2 x. A ) + 3 ) < 9 <-> ( 2 x. A ) < ( 9 - 3 ) ) |
8 |
2 7
|
mpbi |
|- ( 2 x. A ) < ( 9 - 3 ) |
9 |
|
3cn |
|- 3 e. CC |
10 |
|
6cn |
|- 6 e. CC |
11 |
|
6p3e9 |
|- ( 6 + 3 ) = 9 |
12 |
10 9
|
addcomi |
|- ( 6 + 3 ) = ( 3 + 6 ) |
13 |
11 12
|
eqtr3i |
|- 9 = ( 3 + 6 ) |
14 |
13
|
eqcomi |
|- ( 3 + 6 ) = 9 |
15 |
9 10 14
|
mvlladdi |
|- 6 = ( 9 - 3 ) |
16 |
15
|
eqcomi |
|- ( 9 - 3 ) = 6 |
17 |
8 16
|
breqtri |
|- ( 2 x. A ) < 6 |
18 |
|
6re |
|- 6 e. RR |
19 |
|
2nn |
|- 2 e. NN |
20 |
19
|
nngt0i |
|- 0 < 2 |
21 |
4 18 3 20
|
ltdiv1ii |
|- ( ( 2 x. A ) < 6 <-> ( ( 2 x. A ) / 2 ) < ( 6 / 2 ) ) |
22 |
17 21
|
mpbi |
|- ( ( 2 x. A ) / 2 ) < ( 6 / 2 ) |
23 |
1
|
recni |
|- A e. CC |
24 |
|
2cn |
|- 2 e. CC |
25 |
|
2ne0 |
|- 2 =/= 0 |
26 |
23 24 25
|
divcan3i |
|- ( ( 2 x. A ) / 2 ) = A |
27 |
24 9
|
mulcomi |
|- ( 2 x. 3 ) = ( 3 x. 2 ) |
28 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
29 |
27 28
|
eqtri |
|- ( 2 x. 3 ) = 6 |
30 |
10 24 9 25
|
divmuli |
|- ( ( 6 / 2 ) = 3 <-> ( 2 x. 3 ) = 6 ) |
31 |
29 30
|
mpbir |
|- ( 6 / 2 ) = 3 |
32 |
22 26 31
|
3brtr3i |
|- A < 3 |