Description: Practice problem 5. Clues: 3brtr3i mpbi breqtri ltaddsubi remulcli 2re 3re 9re eqcomi mvlladdi 3cn 6cn eqtr3i 6p3e9 addcomi ltdiv1ii 6re nngt0i 2nn divcan3i recni 2cn 2ne0 mpbir eqtri mulcomi 3t2e6 divmuli . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | problem5.1 | |- A e. RR |
|
problem5.2 | |- ( ( 2 x. A ) + 3 ) < 9 |
||
Assertion | problem5 | |- A < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | problem5.1 | |- A e. RR |
|
2 | problem5.2 | |- ( ( 2 x. A ) + 3 ) < 9 |
|
3 | 2re | |- 2 e. RR |
|
4 | 3 1 | remulcli | |- ( 2 x. A ) e. RR |
5 | 3re | |- 3 e. RR |
|
6 | 9re | |- 9 e. RR |
|
7 | 4 5 6 | ltaddsubi | |- ( ( ( 2 x. A ) + 3 ) < 9 <-> ( 2 x. A ) < ( 9 - 3 ) ) |
8 | 2 7 | mpbi | |- ( 2 x. A ) < ( 9 - 3 ) |
9 | 3cn | |- 3 e. CC |
|
10 | 6cn | |- 6 e. CC |
|
11 | 6p3e9 | |- ( 6 + 3 ) = 9 |
|
12 | 10 9 | addcomi | |- ( 6 + 3 ) = ( 3 + 6 ) |
13 | 11 12 | eqtr3i | |- 9 = ( 3 + 6 ) |
14 | 13 | eqcomi | |- ( 3 + 6 ) = 9 |
15 | 9 10 14 | mvlladdi | |- 6 = ( 9 - 3 ) |
16 | 15 | eqcomi | |- ( 9 - 3 ) = 6 |
17 | 8 16 | breqtri | |- ( 2 x. A ) < 6 |
18 | 6re | |- 6 e. RR |
|
19 | 2nn | |- 2 e. NN |
|
20 | 19 | nngt0i | |- 0 < 2 |
21 | 4 18 3 20 | ltdiv1ii | |- ( ( 2 x. A ) < 6 <-> ( ( 2 x. A ) / 2 ) < ( 6 / 2 ) ) |
22 | 17 21 | mpbi | |- ( ( 2 x. A ) / 2 ) < ( 6 / 2 ) |
23 | 1 | recni | |- A e. CC |
24 | 2cn | |- 2 e. CC |
|
25 | 2ne0 | |- 2 =/= 0 |
|
26 | 23 24 25 | divcan3i | |- ( ( 2 x. A ) / 2 ) = A |
27 | 24 9 | mulcomi | |- ( 2 x. 3 ) = ( 3 x. 2 ) |
28 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
29 | 27 28 | eqtri | |- ( 2 x. 3 ) = 6 |
30 | 10 24 9 25 | divmuli | |- ( ( 6 / 2 ) = 3 <-> ( 2 x. 3 ) = 6 ) |
31 | 29 30 | mpbir | |- ( 6 / 2 ) = 3 |
32 | 22 26 31 | 3brtr3i | |- A < 3 |