Metamath Proof Explorer


Theorem prprval

Description: The set of all proper unordered pairs over a given set V . (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprval VWPrPairsV=p|aVbVabp=ab

Proof

Step Hyp Ref Expression
1 df-prpr PrPairs=vVp|avbvabp=ab
2 rexeq v=Vbvabp=abbVabp=ab
3 2 rexeqbi1dv v=Vavbvabp=abaVbVabp=ab
4 3 abbidv v=Vp|avbvabp=ab=p|aVbVabp=ab
5 4 adantl VWv=Vp|avbvabp=ab=p|aVbVabp=ab
6 elex VWVV
7 simpr abp=abp=ab
8 7 ss2abi p|abp=abp|p=ab
9 zfpair2 abV
10 9 eueqi ∃!pp=ab
11 euabex ∃!pp=abp|p=abV
12 10 11 mp1i VWp|p=abV
13 ssexg p|abp=abp|p=abp|p=abVp|abp=abV
14 8 12 13 sylancr VWp|abp=abV
15 14 ralrimivw VWbVp|abp=abV
16 abrexex2g VWbVp|abp=abVp|bVabp=abV
17 15 16 mpdan VWp|bVabp=abV
18 17 ralrimivw VWaVp|bVabp=abV
19 abrexex2g VWaVp|bVabp=abVp|aVbVabp=abV
20 18 19 mpdan VWp|aVbVabp=abV
21 1 5 6 20 fvmptd2 VWPrPairsV=p|aVbVabp=ab