Metamath Proof Explorer


Theorem prprval

Description: The set of all proper unordered pairs over a given set V . (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprval V W PrPairs V = p | a V b V a b p = a b

Proof

Step Hyp Ref Expression
1 df-prpr PrPairs = v V p | a v b v a b p = a b
2 rexeq v = V b v a b p = a b b V a b p = a b
3 2 rexeqbi1dv v = V a v b v a b p = a b a V b V a b p = a b
4 3 abbidv v = V p | a v b v a b p = a b = p | a V b V a b p = a b
5 4 adantl V W v = V p | a v b v a b p = a b = p | a V b V a b p = a b
6 elex V W V V
7 simpr a b p = a b p = a b
8 7 ss2abi p | a b p = a b p | p = a b
9 zfpair2 a b V
10 9 eueqi ∃! p p = a b
11 euabex ∃! p p = a b p | p = a b V
12 10 11 mp1i V W p | p = a b V
13 ssexg p | a b p = a b p | p = a b p | p = a b V p | a b p = a b V
14 8 12 13 sylancr V W p | a b p = a b V
15 14 ralrimivw V W b V p | a b p = a b V
16 abrexex2g V W b V p | a b p = a b V p | b V a b p = a b V
17 15 16 mpdan V W p | b V a b p = a b V
18 17 ralrimivw V W a V p | b V a b p = a b V
19 abrexex2g V W a V p | b V a b p = a b V p | a V b V a b p = a b V
20 18 19 mpdan V W p | a V b V a b p = a b V
21 1 5 6 20 fvmptd2 V W PrPairs V = p | a V b V a b p = a b