Metamath Proof Explorer


Theorem prsprel

Description: The elements of a pair from the set of all unordered pairs over a given set V are elements of the set V . (Contributed by AV, 22-Nov-2021)

Ref Expression
Assertion prsprel XYPairsVXUYWXVYV

Proof

Step Hyp Ref Expression
1 sprel XYPairsVaVbVXY=ab
2 preq12bg XUYWaVbVXY=abX=aY=bX=bY=a
3 eleq1 a=XaVXV
4 3 eqcoms X=aaVXV
5 eleq1 b=YbVYV
6 5 eqcoms Y=bbVYV
7 4 6 bi2anan9 X=aY=baVbVXVYV
8 7 biimpd X=aY=baVbVXVYV
9 eleq1 b=XbVXV
10 9 eqcoms X=bbVXV
11 eleq1 a=YaVYV
12 11 eqcoms Y=aaVYV
13 10 12 bi2anan9 X=bY=abVaVXVYV
14 13 biimpd X=bY=abVaVXVYV
15 14 ancomsd X=bY=aaVbVXVYV
16 8 15 jaoi X=aY=bX=bY=aaVbVXVYV
17 16 com12 aVbVX=aY=bX=bY=aXVYV
18 17 adantl XUYWaVbVX=aY=bX=bY=aXVYV
19 2 18 sylbid XUYWaVbVXY=abXVYV
20 19 expcom aVbVXUYWXY=abXVYV
21 20 com23 aVbVXY=abXUYWXVYV
22 21 rexlimivv aVbVXY=abXUYWXVYV
23 1 22 syl XYPairsVXUYWXVYV
24 23 imp XYPairsVXUYWXVYV