Metamath Proof Explorer


Theorem prssad

Description: If a pair is a subset of a class, the first element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses prssad.1 φ A V
prssad.2 φ A B C
Assertion prssad φ A C

Proof

Step Hyp Ref Expression
1 prssad.1 φ A V
2 prssad.2 φ A B C
3 1 adantr φ B V A V
4 simpr φ B V B V
5 2 adantr φ B V A B C
6 prssg A V B V A C B C A B C
7 6 biimpar A V B V A B C A C B C
8 3 4 5 7 syl21anc φ B V A C B C
9 8 simpld φ B V A C
10 prprc2 ¬ B V A B = A
11 10 adantl φ ¬ B V A B = A
12 2 adantr φ ¬ B V A B C
13 11 12 eqsstrrd φ ¬ B V A C
14 snssg A V A C A C
15 14 biimpar A V A C A C
16 1 13 15 syl2an2r φ ¬ B V A C
17 9 16 pm2.61dan φ A C