Metamath Proof Explorer


Theorem prstcleval

Description: Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstcle.l φ ˙ = K
Assertion prstcleval φ ˙ = C

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstcle.l φ ˙ = K
4 pleid le = Slot ndx
5 slotsdifplendx2 ndx comp ndx ndx Hom ndx
6 5 simpli ndx comp ndx
7 5 simpri ndx Hom ndx
8 1 2 4 6 7 prstcnid φ K = C
9 3 8 eqtrd φ ˙ = C