Metamath Proof Explorer


Theorem prtex

Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 ˙=xy|uAxuyu
Assertion prtex PrtA˙VAV

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙=xy|uAxuyu
2 1 prter1 PrtA˙ErA
3 erexb ˙ErA˙VAV
4 2 3 syl PrtA˙VAV
5 uniexb AVAV
6 4 5 bitr4di PrtA˙VAV