Metamath Proof Explorer


Theorem prtlem100

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 19-Oct-2010)

Ref Expression
Assertion prtlem100 xABxφxABxφ

Proof

Step Hyp Ref Expression
1 anass xAxBxφxAxBxφ
2 eldifsn xAxAx
3 2 anbi1i xABxφxAxBxφ
4 ne0i Bxx
5 4 pm4.71ri BxxBx
6 5 anbi1i BxφxBxφ
7 anass xBxφxBxφ
8 6 7 bitri BxφxBxφ
9 8 anbi2i xABxφxAxBxφ
10 1 3 9 3bitr4ri xABxφxABxφ
11 10 rexbii2 xABxφxABxφ