Metamath Proof Explorer


Theorem prtlem14

Description: Lemma for prter1 , prter2 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion prtlem14 PrtAxAyAwxwyx=y

Proof

Step Hyp Ref Expression
1 df-prt PrtAxAyAx=yxy=
2 rsp2 xAyAx=yxy=xAyAx=yxy=
3 1 2 sylbi PrtAxAyAx=yxy=
4 elin wxywxwy
5 eq0 xy=w¬wxy
6 sp w¬wxy¬wxy
7 5 6 sylbi xy=¬wxy
8 7 pm2.21d xy=wxyx=y
9 4 8 biimtrrid xy=wxwyx=y
10 9 jao1i x=yxy=wxwyx=y
11 3 10 syl6 PrtAxAyAwxwyx=y