Metamath Proof Explorer


Theorem prtlem5

Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion prtlem5 s v r u x A u x v x x A r x s x

Proof

Step Hyp Ref Expression
1 elequ1 u = r u x r x
2 elequ1 v = s v x s x
3 1 2 bi2anan9r v = s u = r u x v x r x s x
4 3 rexbidv v = s u = r x A u x v x x A r x s x
5 4 2sbievw s v r u x A u x v x x A r x s x