Metamath Proof Explorer


Theorem prtlem5

Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion prtlem5 svruxAuxvxxArxsx

Proof

Step Hyp Ref Expression
1 elequ1 u=ruxrx
2 elequ1 v=svxsx
3 1 2 bi2anan9r v=su=ruxvxrxsx
4 3 rexbidv v=su=rxAuxvxxArxsx
5 4 2sbievw svruxAuxvxxArxsx