Metamath Proof Explorer


Theorem psrbagfsupp

Description: Finite bags have finite support. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbagfsupp FDfinSupp0F

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 id FDFD
3 1 psrbagf FDF:I0
4 3 ffnd FDFFnI
5 2 4 fndmexd FDIV
6 1 psrbag IVFDF:I0F-1Fin
7 6 biimpa IVFDF:I0F-1Fin
8 5 7 mpancom FDF:I0F-1Fin
9 8 simprd FDF-1Fin
10 fcdmnn0fsuppg FDF:I0finSupp0FF-1Fin
11 3 10 mpdan FDfinSupp0FF-1Fin
12 9 11 mpbird FDfinSupp0F