Metamath Proof Explorer


Theorem fcdmnn0fsuppg

Description: Version of fcdmnn0fsupp avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 5-Aug-2024)

Ref Expression
Assertion fcdmnn0fsuppg FVF:I0finSupp0FF-1Fin

Proof

Step Hyp Ref Expression
1 ffun F:I0FunF
2 simpl FVF:I0FV
3 c0ex 0V
4 funisfsupp FunFFV0VfinSupp0FFsupp0Fin
5 3 4 mp3an3 FunFFVfinSupp0FFsupp0Fin
6 1 2 5 syl2an2 FVF:I0finSupp0FFsupp0Fin
7 fcdmnn0suppg FVF:I0Fsupp0=F-1
8 7 eleq1d FVF:I0Fsupp0FinF-1Fin
9 6 8 bitrd FVF:I0finSupp0FF-1Fin