Metamath Proof Explorer


Theorem psrbagres

Description: Restrict a bag of variables in I to a bag of variables in J C_ I . (Contributed by SN, 10-Mar-2025)

Ref Expression
Hypotheses psrbagres.d D=h0I|h-1Fin
psrbagres.e E=g0J|g-1Fin
psrbagres.i φIV
psrbagres.j φJI
psrbagres.f φFD
Assertion psrbagres φFJE

Proof

Step Hyp Ref Expression
1 psrbagres.d D=h0I|h-1Fin
2 psrbagres.e E=g0J|g-1Fin
3 psrbagres.i φIV
4 psrbagres.j φJI
5 psrbagres.f φFD
6 1 psrbagf FDF:I0
7 5 6 syl φF:I0
8 7 4 fssresd φFJ:J0
9 1 psrbagfsupp FDfinSupp0F
10 5 9 syl φfinSupp0F
11 0zd φ0
12 10 11 fsuppres φfinSupp0FJ
13 5 resexd φFJV
14 fcdmnn0fsuppg FJVFJ:J0finSupp0FJFJ-1Fin
15 13 8 14 syl2anc φfinSupp0FJFJ-1Fin
16 12 15 mpbid φFJ-1Fin
17 3 4 ssexd φJV
18 2 psrbag JVFJEFJ:J0FJ-1Fin
19 17 18 syl φFJEFJ:J0FJ-1Fin
20 8 16 19 mpbir2and φFJE