Metamath Proof Explorer


Theorem psrneg

Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
psrneg.d D=f0I|f-1Fin
psrneg.i N=invgR
psrneg.b B=BaseS
psrneg.m M=invgS
psrneg.x φXB
Assertion psrneg φMX=NX

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 psrneg.d D=f0I|f-1Fin
5 psrneg.i N=invgR
6 psrneg.b B=BaseS
7 psrneg.m M=invgS
8 psrneg.x φXB
9 eqid 0R=0R
10 eqid +S=+S
11 1 2 3 4 5 6 8 9 10 psrlinv φNX+SX=D×0R
12 eqid 0S=0S
13 1 2 3 4 9 12 psr0 φ0S=D×0R
14 11 13 eqtr4d φNX+SX=0S
15 1 2 3 psrgrp φSGrp
16 1 2 3 4 5 6 8 psrnegcl φNXB
17 6 10 12 7 grpinvid2 SGrpXBNXBMX=NXNX+SX=0S
18 15 8 16 17 syl3anc φMX=NXNX+SX=0S
19 14 18 mpbird φMX=NX