Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BTernaryTau
Graph theory
Acyclic graphs
pthacycspth
Next ⟩
acycgrsubgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
pthacycspth
Description:
A path in an acyclic graph is a simple path.
(Contributed by
BTernaryTau
, 21-Oct-2023)
Ref
Expression
Assertion
pthacycspth
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
SPaths
⁡
G
P
Proof
Step
Hyp
Ref
Expression
1
cyclispth
⊢
F
Cycles
⁡
G
P
→
F
Paths
⁡
G
P
2
1
a1i
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
Cycles
⁡
G
P
→
F
Paths
⁡
G
P
3
acycgrcycl
⊢
G
∈
AcyclicGraph
∧
F
Cycles
⁡
G
P
→
F
=
∅
4
3
ex
⊢
G
∈
AcyclicGraph
→
F
Cycles
⁡
G
P
→
F
=
∅
5
4
adantr
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
Cycles
⁡
G
P
→
F
=
∅
6
2
5
jcad
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
Cycles
⁡
G
P
→
F
Paths
⁡
G
P
∧
F
=
∅
7
spthcycl
⊢
F
Paths
⁡
G
P
∧
F
=
∅
↔
F
SPaths
⁡
G
P
∧
F
Cycles
⁡
G
P
8
7
simplbi
⊢
F
Paths
⁡
G
P
∧
F
=
∅
→
F
SPaths
⁡
G
P
9
6
8
syl6
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
Cycles
⁡
G
P
→
F
SPaths
⁡
G
P
10
pthisspthorcycl
⊢
F
Paths
⁡
G
P
→
F
SPaths
⁡
G
P
∨
F
Cycles
⁡
G
P
11
10
adantl
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
SPaths
⁡
G
P
∨
F
Cycles
⁡
G
P
12
orim2
⊢
F
Cycles
⁡
G
P
→
F
SPaths
⁡
G
P
→
F
SPaths
⁡
G
P
∨
F
Cycles
⁡
G
P
→
F
SPaths
⁡
G
P
∨
F
SPaths
⁡
G
P
13
9
11
12
sylc
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
SPaths
⁡
G
P
∨
F
SPaths
⁡
G
P
14
pm1.2
⊢
F
SPaths
⁡
G
P
∨
F
SPaths
⁡
G
P
→
F
SPaths
⁡
G
P
15
13
14
syl
⊢
G
∈
AcyclicGraph
∧
F
Paths
⁡
G
P
→
F
SPaths
⁡
G
P