| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
| 2 |
1
|
a1i |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) ) |
| 3 |
|
acycgrcycl |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> F = (/) ) |
| 4 |
3
|
ex |
|- ( G e. AcyclicGraph -> ( F ( Cycles ` G ) P -> F = (/) ) ) |
| 5 |
4
|
adantr |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> F = (/) ) ) |
| 6 |
2 5
|
jcad |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ F = (/) ) ) ) |
| 7 |
|
spthcycl |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) <-> ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) ) |
| 8 |
7
|
simplbi |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> F ( SPaths ` G ) P ) |
| 9 |
6 8
|
syl6 |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> F ( SPaths ` G ) P ) ) |
| 10 |
|
pthisspthorcycl |
|- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
| 11 |
10
|
adantl |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
| 12 |
|
orim2 |
|- ( ( F ( Cycles ` G ) P -> F ( SPaths ` G ) P ) -> ( ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) -> ( F ( SPaths ` G ) P \/ F ( SPaths ` G ) P ) ) ) |
| 13 |
9 11 12
|
sylc |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( SPaths ` G ) P \/ F ( SPaths ` G ) P ) ) |
| 14 |
|
pm1.2 |
|- ( ( F ( SPaths ` G ) P \/ F ( SPaths ` G ) P ) -> F ( SPaths ` G ) P ) |
| 15 |
13 14
|
syl |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> F ( SPaths ` G ) P ) |