Step |
Hyp |
Ref |
Expression |
1 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
2 |
1
|
a1i |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) ) |
3 |
|
acycgrcycl |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> F = (/) ) |
4 |
3
|
ex |
|- ( G e. AcyclicGraph -> ( F ( Cycles ` G ) P -> F = (/) ) ) |
5 |
4
|
adantr |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> F = (/) ) ) |
6 |
2 5
|
jcad |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ F = (/) ) ) ) |
7 |
|
spthcycl |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) <-> ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) ) |
8 |
7
|
simplbi |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> F ( SPaths ` G ) P ) |
9 |
6 8
|
syl6 |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( Cycles ` G ) P -> F ( SPaths ` G ) P ) ) |
10 |
|
pthisspthorcycl |
|- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
11 |
10
|
adantl |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
12 |
|
orim2 |
|- ( ( F ( Cycles ` G ) P -> F ( SPaths ` G ) P ) -> ( ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) -> ( F ( SPaths ` G ) P \/ F ( SPaths ` G ) P ) ) ) |
13 |
9 11 12
|
sylc |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> ( F ( SPaths ` G ) P \/ F ( SPaths ` G ) P ) ) |
14 |
|
pm1.2 |
|- ( ( F ( SPaths ` G ) P \/ F ( SPaths ` G ) P ) -> F ( SPaths ` G ) P ) |
15 |
13 14
|
syl |
|- ( ( G e. AcyclicGraph /\ F ( Paths ` G ) P ) -> F ( SPaths ` G ) P ) |