Metamath Proof Explorer


Theorem pwdom

Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion pwdom AB𝒫A𝒫B

Proof

Step Hyp Ref Expression
1 pweq A=𝒫A=𝒫
2 1 breq1d A=𝒫A𝒫B𝒫𝒫B
3 reldom Rel
4 3 brrelex1i ABAV
5 0sdomg AVAA
6 4 5 syl ABAA
7 6 biimpar ABAA
8 simpl ABAAB
9 fodomr AABff:BontoA
10 7 8 9 syl2anc ABAff:BontoA
11 vex fV
12 fopwdom fVf:BontoA𝒫A𝒫B
13 11 12 mpan f:BontoA𝒫A𝒫B
14 13 exlimiv ff:BontoA𝒫A𝒫B
15 10 14 syl ABA𝒫A𝒫B
16 3 brrelex2i ABBV
17 16 pwexd AB𝒫BV
18 0ss B
19 18 sspwi 𝒫𝒫B
20 ssdomg 𝒫BV𝒫𝒫B𝒫𝒫B
21 17 19 20 mpisyl AB𝒫𝒫B
22 2 15 21 pm2.61ne AB𝒫A𝒫B