Metamath Proof Explorer


Theorem pwelg

Description: The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwelg xBxB𝒫xBAB𝒫AB

Proof

Step Hyp Ref Expression
1 simpr xB𝒫xB𝒫xB
2 1 ralimi xBxB𝒫xBxB𝒫xB
3 pweq x=A𝒫x=𝒫A
4 3 eleq1d x=A𝒫xB𝒫AB
5 4 rspccv xB𝒫xBAB𝒫AB
6 2 5 syl xBxB𝒫xBAB𝒫AB
7 simpl xB𝒫xBxB
8 7 ralimi xBxB𝒫xBxBxB
9 unieq x=𝒫Ax=𝒫A
10 unipw 𝒫A=A
11 9 10 eqtrdi x=𝒫Ax=A
12 11 eleq1d x=𝒫AxBAB
13 12 rspccv xBxB𝒫ABAB
14 8 13 syl xBxB𝒫xB𝒫ABAB
15 6 14 impbid xBxB𝒫xBAB𝒫AB