Description: The power set of a finite set is finite and vice-versa. Theorem 38 of Suppes p. 104 and its converse, Theorem 40 of Suppes p. 105. (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | pwfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq | |
|
2 | 1 | eleq1d | |
3 | pweq | |
|
4 | 3 | eleq1d | |
5 | pweq | |
|
6 | 5 | eleq1d | |
7 | pweq | |
|
8 | 7 | eleq1d | |
9 | pw0 | |
|
10 | snfi | |
|
11 | 9 10 | eqeltri | |
12 | eqid | |
|
13 | 12 | pwfilem | |
14 | 13 | a1i | |
15 | 2 4 6 8 11 14 | findcard2 | |
16 | pwfir | |
|
17 | 15 16 | impbii | |