Metamath Proof Explorer


Theorem pwfi

Description: The power set of a finite set is finite and vice-versa. Theorem 38 of Suppes p. 104 and its converse, Theorem 40 of Suppes p. 105. (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)

Ref Expression
Assertion pwfi AFin𝒫AFin

Proof

Step Hyp Ref Expression
1 pweq x=𝒫x=𝒫
2 1 eleq1d x=𝒫xFin𝒫Fin
3 pweq x=y𝒫x=𝒫y
4 3 eleq1d x=y𝒫xFin𝒫yFin
5 pweq x=yz𝒫x=𝒫yz
6 5 eleq1d x=yz𝒫xFin𝒫yzFin
7 pweq x=A𝒫x=𝒫A
8 7 eleq1d x=A𝒫xFin𝒫AFin
9 pw0 𝒫=
10 snfi Fin
11 9 10 eqeltri 𝒫Fin
12 eqid c𝒫ycz=c𝒫ycz
13 12 pwfilem 𝒫yFin𝒫yzFin
14 13 a1i yFin𝒫yFin𝒫yzFin
15 2 4 6 8 11 14 findcard2 AFin𝒫AFin
16 pwfir 𝒫AFinAFin
17 15 16 impbii AFin𝒫AFin