Metamath Proof Explorer


Theorem pwinfi3

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here T is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfi3 TTarskiTrTATFin𝒫ATFin

Proof

Step Hyp Ref Expression
1 tskuni TTarskiTrTxTxT
2 1 3expia TTarskiTrTxTxT
3 tskpw TTarskixT𝒫xT
4 3 ex TTarskixT𝒫xT
5 4 adantr TTarskiTrTxT𝒫xT
6 2 5 jcad TTarskiTrTxTxT𝒫xT
7 6 ralrimiv TTarskiTrTxTxT𝒫xT
8 pwinfig xTxT𝒫xTATFin𝒫ATFin
9 7 8 syl TTarskiTrTATFin𝒫ATFin