Metamath Proof Explorer


Theorem pwscrng

Description: A structure power of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypothesis pwscrng.y Y=R𝑠I
Assertion pwscrng RCRingIVYCRing

Proof

Step Hyp Ref Expression
1 pwscrng.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval RCRingIVY=ScalarR𝑠I×R
4 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
5 simpr RCRingIVIV
6 fvexd RCRingIVScalarRV
7 fconst6g RCRingI×R:ICRing
8 7 adantr RCRingIVI×R:ICRing
9 4 5 6 8 prdscrngd RCRingIVScalarR𝑠I×RCRing
10 3 9 eqeltrd RCRingIVYCRing