Metamath Proof Explorer


Theorem pwssplit0

Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y=W𝑠U
pwssplit1.z Z=W𝑠V
pwssplit1.b B=BaseY
pwssplit1.c C=BaseZ
pwssplit1.f F=xBxV
Assertion pwssplit0 WTUXVUF:BC

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y=W𝑠U
2 pwssplit1.z Z=W𝑠V
3 pwssplit1.b B=BaseY
4 pwssplit1.c C=BaseZ
5 pwssplit1.f F=xBxV
6 eqid BaseW=BaseW
7 1 6 3 pwselbasb WTUXxBx:UBaseW
8 7 3adant3 WTUXVUxBx:UBaseW
9 8 biimpa WTUXVUxBx:UBaseW
10 simpl3 WTUXVUxBVU
11 9 10 fssresd WTUXVUxBxV:VBaseW
12 simp1 WTUXVUWT
13 simp2 WTUXVUUX
14 simp3 WTUXVUVU
15 13 14 ssexd WTUXVUVV
16 2 6 4 pwselbasb WTVVxVCxV:VBaseW
17 12 15 16 syl2anc WTUXVUxVCxV:VBaseW
18 17 adantr WTUXVUxBxVCxV:VBaseW
19 11 18 mpbird WTUXVUxBxVC
20 19 5 fmptd WTUXVUF:BC