Metamath Proof Explorer


Theorem pwwf

Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion pwwf AR1On𝒫AR1On

Proof

Step Hyp Ref Expression
1 r1rankidb AR1OnAR1rankA
2 1 sspwd AR1On𝒫A𝒫R1rankA
3 rankdmr1 rankAdomR1
4 r1sucg rankAdomR1R1sucrankA=𝒫R1rankA
5 3 4 ax-mp R1sucrankA=𝒫R1rankA
6 2 5 sseqtrrdi AR1On𝒫AR1sucrankA
7 fvex R1sucrankAV
8 7 elpw2 𝒫A𝒫R1sucrankA𝒫AR1sucrankA
9 6 8 sylibr AR1On𝒫A𝒫R1sucrankA
10 r1funlim FunR1LimdomR1
11 10 simpri LimdomR1
12 limsuc LimdomR1rankAdomR1sucrankAdomR1
13 11 12 ax-mp rankAdomR1sucrankAdomR1
14 3 13 mpbi sucrankAdomR1
15 r1sucg sucrankAdomR1R1sucsucrankA=𝒫R1sucrankA
16 14 15 ax-mp R1sucsucrankA=𝒫R1sucrankA
17 9 16 eleqtrrdi AR1On𝒫AR1sucsucrankA
18 r1elwf 𝒫AR1sucsucrankA𝒫AR1On
19 17 18 syl AR1On𝒫AR1On
20 r1elssi 𝒫AR1On𝒫AR1On
21 pwexr 𝒫AR1OnAV
22 pwidg AVA𝒫A
23 21 22 syl 𝒫AR1OnA𝒫A
24 20 23 sseldd 𝒫AR1OnAR1On
25 19 24 impbii AR1On𝒫AR1On