Metamath Proof Explorer


Theorem pzriprnglem2

Description: Lemma 2 for pzriprng : The base set of R is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypothesis pzriprng.r R = ring × 𝑠 ring
Assertion pzriprnglem2 Base R = ×

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 zringring ring Ring
3 zringbas = Base ring
4 id ring Ring ring Ring
5 1 3 3 4 4 xpsbas ring Ring × = Base R
6 2 5 ax-mp × = Base R
7 6 eqcomi Base R = ×