Metamath Proof Explorer


Theorem qabsabv

Description: The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
Assertion qabsabv abs A

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 absabv abs AbsVal fld
4 qsubdrg SubRing fld fld 𝑠 DivRing
5 4 simpli SubRing fld
6 eqid AbsVal fld = AbsVal fld
7 6 1 2 abvres abs AbsVal fld SubRing fld abs A
8 3 5 7 mp2an abs A