Metamath Proof Explorer


Theorem qextlt

Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion qextlt A * B * A = B x x < A x < B

Proof

Step Hyp Ref Expression
1 breq2 A = B x < A x < B
2 1 ralrimivw A = B x x < A x < B
3 xrlttri2 A * B * A B A < B B < A
4 qextltlem A * B * A < B x ¬ x < A x < B ¬ x A x B
5 simpl ¬ x < A x < B ¬ x A x B ¬ x < A x < B
6 5 reximi x ¬ x < A x < B ¬ x A x B x ¬ x < A x < B
7 4 6 syl6 A * B * A < B x ¬ x < A x < B
8 qextltlem B * A * B < A x ¬ x < B x < A ¬ x B x A
9 simpl ¬ x < B x < A ¬ x B x A ¬ x < B x < A
10 bicom x < B x < A x < A x < B
11 9 10 sylnib ¬ x < B x < A ¬ x B x A ¬ x < A x < B
12 11 reximi x ¬ x < B x < A ¬ x B x A x ¬ x < A x < B
13 8 12 syl6 B * A * B < A x ¬ x < A x < B
14 13 ancoms A * B * B < A x ¬ x < A x < B
15 7 14 jaod A * B * A < B B < A x ¬ x < A x < B
16 3 15 sylbid A * B * A B x ¬ x < A x < B
17 rexnal x ¬ x < A x < B ¬ x x < A x < B
18 16 17 syl6ib A * B * A B ¬ x x < A x < B
19 18 necon4ad A * B * x x < A x < B A = B
20 2 19 impbid2 A * B * A = B x x < A x < B