Metamath Proof Explorer


Theorem qextlt

Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion qextlt A*B*A=Bxx<Ax<B

Proof

Step Hyp Ref Expression
1 breq2 A=Bx<Ax<B
2 1 ralrimivw A=Bxx<Ax<B
3 xrlttri2 A*B*ABA<BB<A
4 qextltlem A*B*A<Bx¬x<Ax<B¬xAxB
5 simpl ¬x<Ax<B¬xAxB¬x<Ax<B
6 5 reximi x¬x<Ax<B¬xAxBx¬x<Ax<B
7 4 6 syl6 A*B*A<Bx¬x<Ax<B
8 qextltlem B*A*B<Ax¬x<Bx<A¬xBxA
9 simpl ¬x<Bx<A¬xBxA¬x<Bx<A
10 bicom x<Bx<Ax<Ax<B
11 9 10 sylnib ¬x<Bx<A¬xBxA¬x<Ax<B
12 11 reximi x¬x<Bx<A¬xBxAx¬x<Ax<B
13 8 12 syl6 B*A*B<Ax¬x<Ax<B
14 13 ancoms A*B*B<Ax¬x<Ax<B
15 7 14 jaod A*B*A<BB<Ax¬x<Ax<B
16 3 15 sylbid A*B*ABx¬x<Ax<B
17 rexnal x¬x<Ax<B¬xx<Ax<B
18 16 17 imbitrdi A*B*AB¬xx<Ax<B
19 18 necon4ad A*B*xx<Ax<BA=B
20 2 19 impbid2 A*B*A=Bxx<Ax<B